7.2.1 Vorlage und Auswahl von Projektskizzen (erste Förderphase und Direkteinstieg zweite Förderphase)
Silvia Anna Palka, stellvertretende Leiterin der RegioClusterAgentur, begrüßte die Teilnehmerinnen und Teilnehmer zur Veranstaltung und stellte die Agentur sowie das Konzept der Veranstaltung vor. Dr. Andreas Ehrhardt, Geschäftsführer von Photonics BW, stellte anschließend das Innovationsnetzwerk für die Optischen Technologien und Quantentechnologien in Baden-Württemberg sowie QuantumBW, die Landesinitiative zur Förderung der Quantentechnologien, vor.
Dr. Verena Grimm, gab Einblicke in die Aufgabenbereiche und Vernetzung der BioRegio STERN in Medizin und Life Sciences. Neben einer Plattform zum gemeinsamen Erfahrungsaustausch und zur Entwicklung neuer Technologien sowie nachhaltiger Konzepte, leiteten sie unter anderem auch das Innovationsnetzwerk „biohymed“, ZIM-Netzwerk des Jahres 2024.
Im Anschluss erläuterte Prof. Dr. Ralf Kindervater, Geschäftsführer der BIOPRO BW, die Reichweite der Projekte auf Landesebene. Dr. Monika Bach, Bereichsleiterin der Gruppe Biomedizin und Materialanalyse, stellte die Forschungsaktivitäten am NMI vor.
Vier Fachvorträge zeigten anschließend Best Practices und Anwendungspotenziale der Quantentechnologien und Photonik in der Medizintechnik auf. Moderiert wurde die Session von Andre Salzinger, Projektmanager Quantentechnologien bei Photonics BW.
Dr. Chiara Lindner, wissenschaftliche Mitarbeiterin am Fraunhofer IPM, stellte ihre Ergebnisse zur Infrarotspektroskopie mit „undetektierten“ Photonen vor. Hier wird der quantenmechanische Effekt der Verschränkung genutzt, um hyperspektrale Bildinformation mit Photonen im sichtbaren Bereich des Lichts auf einfachen Detektoren zu sammeln, während die Photonen im Infrarot-Bereich das Objekt beleuchten. Dr. Felix Nissen, Head of Technology Partnerships der NVision Imaging Technologies GmbH, präsentierte die neuen Möglichkeiten der Magnetresonanztomographie mit hyperpolarisiertem Kontrastmittel. Mit dieser quantentechnologischen Erweiterung der bekannten Methode können beispielsweise Stoffwechsel-Produkte von Krebszellen örtlich aufgelöst erkannt werden. Dr. Antonia Gronle, Metrology System Specialist bei der Printoptix GmbH, stellte die Konstruktion von Endoskop-Optik mit wenigen 100 Mikrometern Durchmesser vor. Ermöglicht durch die 2-Photonen Polymerisation der Nanoscribe GmbH & Co. KG, können mit diesen Endoskopen sogar Information aus dem Inneren von Venen und Arterien gewonnen werden. Einen idealen Anwendungsfall für diese Techniken bot Dr. Julia Marzi, Gruppenleiterin Biophotonik und Spektroskopie am NMI, in ihrem Vortrag zu spektralen „Fingerabdrücken“ in der regenerativen Medizin. Hier werden Raman-Spektroskopie und weitere Verfahren verwendet, um detaillierte Informationen über die Interaktion von künstlichen und natürlichen Gewebestrukturen zu erhalten.
Im Anschluss an die Vorträge fanden mehrere Matchmaking-Runden, in gezielten 1:1 Meetings, statt. Die Teilnehmenden hatten dadurch die Gelegenheit, neue Kontakte zu knüpfen und gemeinsame Ansatzpunkte für Kooperationen zu finden.
Nach dem Matchmaking stellte Christian Stolper die Förderberatung „Forschung und Innovation“ des Bundes sowie laufende Förderprogramme vor und gab wertvolle Hinweise zur Antragstellung.
Gemeinsam mit Dr. Tarek Lutz, Gruppenleiter am Nanoanalytikzentrum des NMI, besichtigten die Teilnehmenden die beeindruckenden Elektronen-Mikroskope, die dem Standort Reutlingen enorme Möglichkeiten bei der Analyse mit atomarer Auflösung verschaffen.
Bei einem gemütlichen Get-together hatten die über 30 Teilnehmenden anschließend die Möglichkeit zum persönlichen Networking und zur Vertiefung der Kontakte.
Wir bedanken uns ganz herzlich bei allen Speakern, Teilnehmenden, den beteiligten Netzwerken, der RegioClusterAgentur sowie bei den Gastgebern des NMI für die gelungene Veranstaltung!
Das nächste Cross-Clustering Event wird sich dem Thema Quantentechnologien in der Umwelttechnik widmen. Die Infos dazu werden auf der Homepage von Photonics BW unter www.photonicsbw.de bekanntgegeben. Die Cross-Cluster-Veranstaltungen werden auch durch das Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg gefördert.
]]>Broaden your network: the well-established “author interviews” allow you to directly interact with interested attendees in an informal atmosphere at round tables. Posters are located in the coffee break area and are “highly visible” during the whole electronics displays Conference.
A huge additional benefi t is the “electronic displays area” of the embedded world exhibition which runs in parallel to edC.
Topics of electronic displays Conference
Abstract Submission: until 07 October 2024
Notification of authors: November 2024
Paper or presentation for edC proceedings: February 2025
For more information, please visit this page.
Die VISION 2024 verspricht nicht nur größer und internationaler zu werden, auch das Forumsprogramm mit seinen zwei Vortragsbühnen ist noch umfassender und bietet hochklassige Beiträge zu den wichtigsten Trendthemen der Branche. Die drei tragenden Säulen des Programms sind die Industrial VISION Days, die Scientific VISION Days und der VISION Award.
Größtes Vortragsforum für Bildverarbeitung weltweit
Die Industrial VISION Days, die gemeinsam vom VDMA Machine Vision und der Messe Stuttgart organisiert werden, sind das weltweit größte Vortragsforum der Branche und bekannt für intensiven Wissenstransfer im Bereich der Bildverarbeitung. Viele Vorträge gehen dieses Jahr wieder auf die Trendthemen 3D Imaging, Hyperspectral / Beyond the Visible sowie KI ein, sehr oft mit Anwendungsbeispielen. „High-speed“ ist im Bereich der Kameratechnologie ein heißes Thema. „Besonders gespannt bin ich auf die Podiumsdiskussion ‚Generative AI for Machine Vision – Dream or Coming True?‘“, sagt Anne Wendel, Leiterin der VDMA Fachabteilung Machine Vision. „Das Thema Generative KI für die Bildverarbeitung ist von großer Bedeutung für die Branche, nicht zuletzt durch Entwicklungen wie ChatGPT2. Es bleibt abzuwarten, wo die Bildverarbeitungsindustrie aktuell steht: Gibt es bereits konkrete Entwicklungen hin zu einem VisionGPT? Welche neuen Anwendungsfelder könnten durch den Einsatz von Generativer KI erschlossen werden? Die Einschätzungen der Experten werden sicherlich spannend und richtungsweisend sein.“ Neben der VDMA-Podiumsdiskussion sind die Verleihung des VISION Awards und die VISION Start-up Pitch Sessions klassische Publikumsmagneten der Industrial VISION Days. Die über 70 Vorträge werden zusätzlich sowohl im Livestream als auch on demand online zur Verfügung stehen.
Trendthema synthetische Daten
Ganz oben auf der Agenda der Scientific VISION Days steht das Trendthema synthetische Daten. So lassen sich mit Digitalen Zwillingen bereits vor dem physischen Aufbau realitätsnahe und qualitativ hochwertige Datensätze berechnen. Dies erleichtert die korrekte Auslegung von Bildverarbeitungssystemen und reduziert den Testaufwand an der Produktionsanlage. Dadurch sind die Systeme schneller einsatzbereit. Bei der Anwendung von KI-Methoden erleichtert die Kombination von realen Sensordaten mit sensorrealistischen synthetischen Daten das Daten-Balancing und hilft, Datenverzerrungen zu reduzieren. Die Robustheit und Genauigkeit der Methoden wird dadurch deutlich verbessert. „Diese Innovationen verschieben die Grenzen des Einsatzes von KI in der Bildverarbeitung und machen die diesjährigen Scientific VISION Days zu einem Muss, um sich über die neuesten Entwicklungen in diesem Bereich zu informieren“, sagt Petra Thanner Expertin für Bildverarbeitung und thematische Koordination am AIT Austrian Institute of Technology, das die Scientific VISION Days in Kooperation mit der Messe Stuttgart organisiert.
3D-Scanning erreicht nächstes Level
Ein weiterer wissenschaftlicher Schwerpunkt liegt auf Spitzentechnologien im Bereich Machine Vision. Dabei geht es unter anderem um moderne Objektive und innovative Erfassungsmethoden, die die Qualität des 3D-Scannens verbessern, indem sie durch klarere und detailliertere Bilder die Grundlage für bessere Rekonstruktionen bilden. Fortschritte in der Mikroskopie ermöglichen schnelleres Scannen, was wiederum die Abtastrate verbessert und die Analyse beschleunigt. Neue Lösungen optimieren auch das Imaging transparenter Materialien und sorgen für eine zuverlässigere Datenerfassung. Darüber hinaus wird die Anwendung der 3D-Scanning-Technologie auf Bereiche wie Schweißen und Mikroskopie ausgeweitet, was die Qualitätskontrolle für kleinste Details und damit die Präzision der Produkte deutlich verbessert. „Diese Fortschritte treiben die Weiterentwicklung der Bildverarbeitung voran und eröffnen neue Einsatzmöglichkeiten, die weit über die heute etablierten Anwendungsfelder hinausgehen“, ergänzt Thanner.
Award Beiträge von hoher technischer Exzellenz
Ein besonderes Highlight des Forumsprogramm ist der VISION Award. Der Preis für technologische Spitzenleistungen auf dem Gebiet der Bildverarbeitung wird während der Messe verliehen. Alle fünf nominierten Unternehmen werden ihre Innovation im Rahmen einer einstündigen Session am 9. Oktober vorstellen. Warren Clark, Verlagsleiter von Imaging and Machine Vision Europe, dem Sponsor des mit 3.000 € dotierten Preises, wird die VISION Award Preisverleihung moderieren, Jurymitglied Chris Yates von Vision Ventures den Gesamtsieger küren. Yates lobte die Einreichungen, die sich sämtlich durch ein hohes Maß an technischer Exzellenz auszeichnen würden, einem klaren Bedarf entsprächen und in der Lage seien, einem breiten Spektrum von Endnutzern einen Mehrwert zu bieten. „In den Beiträgen von PxE Imaging, Toshiba Teli und AIT wurden innovative Kombinationen von optischen Elementen und Software eingesetzt, um leistungsstarke neue Erfassungsmöglichkeiten zu schaffen. Die Ausweitung der Möglichkeiten der Bildverarbeitungstechnologie ist ein wichtiger Wachstumsfaktor, und jede dieser Innovationen zeigt eine attraktive neue Richtung auf“, führt er aus. „Eine modulare Design- und Einsatzphilosophie steht im Mittelpunkt des Hybrid-Switches von Murrelektronik und auch des AI-Vision-Systems von AiRob. Skalierbare oder verteilte Lösungsarchitekturen können den Endanwendern große Vorteile bieten, da sie in der Regel die Wartungs- und Einführungskosten senken. Die automatisierte Qualitätskontrolle manueller Vorgänge ist ebenfalls eine komplexe Aufgabe, für die KI-Vision jedoch eine technische Lösung bietet, wie der Beitrag von AiRob zeigt.“ Die Shortlist der nominierten Firmen sowie deren Abstracts können online eingesehen werden.
Trendwende erwartet
Nach einem schwierigen Jahr 2023 blicken die Veranstalter optimistisch auf die VISION 2024 und die weitere Entwicklung der Branche. „Viele Industrien setzen auf Bildverarbeitung. Sowohl in traditionellen Produktionsumgebungen als auch in neuen Anwendungsfeldern außerhalb des Fabrikumfelds. Hohe Qualität, Produktivität und Wettbewerbsfähigkeit, größere Autonomie und erhöhte Sicherheit – das sind entscheidende Einsatzfaktoren für Bildverarbeitung. Die VISION 2024, die Weltleitmesse für Bildverarbeitung, ist die ideale Plattform, um die neuesten Trends und Entwicklungen zu erleben und zu diskutieren – und, sie wird der Branche einen starken Wachstumsimpuls geben!“, ist Anne Wendel überzeugt.
Über die VISION
Die Weltleitmesse für Bildverarbeitung findet vom 8. bis 10. Oktober 2024 auf der Messe Stuttgart statt. In einem zweijährigen Turnus wird auf der VISION das komplette Spektrum der Bildverarbeitungstechnologie abgebildet. Besonders zeichnet sich die Fachmesse durch erstklassige Aussteller, eine hohe Internationalität und ein abwechslungsreiches Rahmenprogramm aus.
Weitere Informationen zur VISION in Stuttgart unter: www.vision-messe.de
Weitere Informationen zur Shortlist mit den besten Einreichungen des VISION Awards:
https://www.messe-stuttgart.de/vision/programm/vision-award/shortlist-der-besten-einreichungen
Parallele Veranstaltungen
Besucherinnen und Besucher der VISION finden auf dem Messegelände Stuttgart weitere Fachmessen, die sie mit ihrem Ticket besuchen können: die BondExpo für Klebetechnologie, die hy-fcell für Wasserstoff- und Brennstoffzellentechnologie, die IN.STAND für Instandhaltung und Services, die Motek für Produktions- und Montageautomatisierung sowie die Quantum Effects für Quantentechnologien.
Weitere Informationen zum Hallenplan und der Geländeübersicht unter:
www.vision-messe.de/hallenplan
Folgende Technologiefelder werden gefördert:
Nähere Informationen erhalten Sie hier.
]]>Einsendeschluss für die Bewerbungsunterlagen ist der 29. September 2024. Alle Informationen sowie die Möglichkeit zur Bewerbung finden Sie und Interessierte außerdem unter
https://www.quantentechnologien.de/nachwuchs/quantum-future-award.html
1 Förderziel, Zuwendungszweck, Rechtsgrundlage
1.1 Förderziel
Das Bundesministerium für Bildung und Forschung (BMBF) und die Regierungen der Länder der Bundesrepublik Deutschland unterstützen im Rahmen des Programms zur Förderung der anwendungsorientierten Forschung an Hochschulen für Angewandte Wissenschaften (HAW) mit der Förderrichtlinie „HAW-ForschungsraumQualifizierung“ die HAW bei der Qualifizierung anwendungs- und forschungsaffiner Studierender und Wissenschaftlerinnen/Wissenschaftler.
Eine hochwertige Qualifizierung von Nachwuchskräften erfordert exzellente Forschungsbedingungen, anspruchsvolle Forschungsfragen und Hochschulstrukturen, welche Studierende fordern und fördern. Die Förderrichtlinie zielt darauf ab, Forschungsprofile von HAW zu stärken und diese Stärkung mit der Entwicklung von Nachwuchskräften aller Qualifikationsstufen zu verbinden. Dafür sollen attraktive Forschungs- und Qualifizierungsmöglichkeiten – so genannte Forschungsräume – an den Hochschulen auf- beziehungsweise ausgebaut werden, die verschiedene Nutzergruppen ansprechen. Die Forschungsräume sollen Strahlkraft für die Hochschule entfalten und Magnet für Kooperationspartner sowie Studierende aus dem In- und Ausland sein.
Übergeordnetes Ziel der Fördermaßnahme ist, die Attraktivität der Hochschulen für exzellente Studierende und Nachwuchsforschende aus dem In- und Ausland zu erhöhen. Die Forschungs- und Qualifizierungskompetenz der Hochschulen soll dadurch entsprechend ausgebaut werden.
Durch eine gezielte Wissenschaftskommunikation soll die Sichtbarkeit des Vorhabens und der neu geschaffenen oder ausgebauten Qualifizierungsangebote der Hochschule erhöht werden.
1.2 Zuwendungszweck
Zur Erreichung der genannten Ziele werden Projekte gefördert, die Investitionen in Forschungsräume und Maßnahmen zur Nachwuchsförderung konzeptionell mit einem Forschungsprojekt verknüpfen. Forschungsräume können dabei zum Beispiel innovative Forschungsgeräte, neuartige Labore oder die Ausstattung von Medienstudios oder Makerspaces sein.
Mit der Einrichtung von Forschungsräumen sollen die Hochschulen in die Lage versetzt werden, zukünftig auch in anderen Forschungsförderangeboten erfolgreich zu sein. Gefördert werden themenoffene Forschungsprojekte, die in ein konsistentes Gesamtkonzept eingebettet sind. Dieses Gesamtkonzept soll die geplante Nutzung des Forschungsraums auch für die Zeit nach Projektende sowie die zukünftige Verankerung des Qualifikationskonzepts in den Hochschulstrukturen beschreiben.
Die Ergebnisse des geförderten Vorhabens dürfen nur in der Bundesrepublik Deutschland oder dem EWR und der Schweiz genutzt werden.
2 Gegenstand der Förderung
Die Projekte sollen aus drei Modulen bestehen, um die Vorhaben vollumfänglich abzubilden.
Modul 1 Forschungsraum:
Es sollen Anschaffungen getätigt werden, die für den Ausbau oder die Neueinrichtung eines Raums für Forschung oder eines Geräte- und Ausstattungspools vorgesehen sind.
Als Forschungsraum wird ein Gerät oder ein Ort inklusive der für das beantragte Vorhaben notwendigen Ausstattung verstanden. Dies könnte zum Beispiel Geräte, Labore, Prüfstände oder die Ausstattung für Medienstudios beinhalten. Der Forschungsraum soll Zentrum der Module 2 und 3 sein und eng in Forschung sowie Qualifizierung von Nachwuchskräften einbezogen werden. Er soll der Hochschule neue Möglichkeiten der Forschung und des Ansprechens von externen Nutzergruppen ermöglichen. Neben den Studierenden und Wissenschaftlerinnen/Wissenschaftlern, die ein Forschungsprojekt in dem Forschungsraum bearbeiten, sollen perspektivisch auch andere Gruppen (zum Beispiel Forschungspartner, Schulen) an dem auf Basis des Forschungsraums ausgebauten Qualifizierungsangebot der Hochschule teilnehmen können. Der Forschungsraum soll den Rahmen für ein innovatives Forschungsprojekt (Modul 2) bilden, in den die Lehre von Masterstudiengängen integriert und der für Promovierende und Postdocs zur Verfügung gestellt wird.
Modul 2 Forschungsprojekt:
Das Gesamtvorhaben soll auch einen Forschungsteil beinhalten. Insgesamt soll im Vorhaben anwendungsorientierte Forschung mit forschungsnaher und projektspezifischer Qualifizierung von Studierenden und wissenschaftlichen Mitarbeitenden sowie den dafür notwendigen Investitionen kombiniert werden. Partner aus Wirtschaft, Gesellschaft und Wissenschaft (ohne Förderung) können eingebunden werden. Im Rahmen des Forschungsprojekts sollen auch Abschlussarbeiten für Studierende ermöglicht werden. Die Einbindung von Promotionen und Forschungsarbeiten von Postdocs ist ebenfalls möglich.
Modul 3 Qualifizierung:
Um die Attraktivität der Qualifizierungsangebote der Hochschule zu steigern und diese Angebote fest in den Forschungsräumen zu verankern, sind Aktivitäten zur Schaffung von Nachwuchsförderung auszuarbeiten und entsprechende Steuerungselemente innerhalb der Hochschulstruktur anzusiedeln. Konzepte zur Qualifizierung können beispielsweise Weiterbildungen an den Geräten im Forschungsraum, die mögliche Nutzung der Räumlichkeiten für Studierende, Mentoringprogramme, Workshops, die Befähigung Studierender zu selbständigen Antragstellungen, Strategieentwicklung, Gründungen oder Ähnliches enthalten. Weiterhin sind Maßnahmen der Wissenschaftskommunikation zur Erhöhung der Sichtbarkeit des Forschungsraums und der Qualifizierungsangebote zu integrieren.
3 Zuwendungsempfänger
Bund und Sitzland der ausführenden Hochschule fördern HAW in staatlicher Trägerschaft, einschließlich der Hochschulen in Trägerschaft einer Stiftung des öffentlichen Rechts sowie staatlich anerkannte HAW, die überwiegend staatlich refinanziert werden, jeweils vertreten durch ihre Leitung.
Werden über diesen Kreis hinaus private HAW gefördert, so tragen diese gemäß § 3 der BLV 2024 – 2030 zumindest den Anteil, den das Sitzland übernehmen würde, selbst. Der Eigenanteil errechnet sich pro Jahr auf Basis der zuwendungsfähigen Gesamtausgaben ohne Projektpauschale (2024: 0 Prozent, 2025: 5 Prozent, 2026: 10 Prozent, 2027: 15 Prozent, 2028: 20 Prozent, 2029: 25 Prozent, 2030: 50 Prozent).
4 Besondere Zuwendungsvoraussetzungen
Die zuwendungsrechtlichen Bewilligungsvoraussetzungen sind in den Verwaltungsvorschriften zu § 44 BHO geregelt.
Alle Zuwendungsempfänger stellen sicher, dass keine indirekten (mittelbaren) Beihilfen an Unternehmen fließen. Dazu sind die Bestimmungen von Nummer 2.2 des Unionsrahmens zur Förderung von Forschung, Entwicklung und Innovation zu beachten.
5 Art und Umfang, Höhe der Zuwendung
Zuwendungen vom BMBF und von dem jeweils fachlich für die HAW zuständigen Ressort des Landes werden im Wege der Projektförderung als nicht rückzahlbare Zuschüsse durch Zuwendungsbescheid des BMBF gewährt. Bemessungsgrundlage sind die zuwendungsfähigen projektbezogenen Ausgaben, die bis zu 100 Prozent im Wege der anteiligen Fehlbedarfsfinanzierung innerhalb der Laufzeit des Projekts gefördert werden können.
Die Förderung darf nicht im Bereich der wirtschaftlichen Tätigkeiten erfolgen.
Bei nichtwirtschaftlichen Forschungsvorhaben an Hochschulen wird zusätzlich zu den gemeinsam durch die Fachressorts der Länder und das BMBF finanzierten zuwendungsfähigen Ausgaben eine Projektpauschale in Höhe von 20 Prozent gewährt.
Die Projektlaufzeit beträgt 48 Monate.
Das „Modul 1 Forschungsraum“ soll nach spätestens 15 Monaten für erste Projektarbeiten nutzbar sein. Die Ausgaben für Modul 1 sollen nicht mehr als die Hälfte der beantragten Gesamtausgaben (ohne Projektpauschale) ausmachen.
Die zuwendungsfähigen Ausgaben richten sich nach den „Richtlinien für Zuwendungsanträge auf Ausgabenbasis (AZAP)“ des BMBF.
Zuwendungsfähig sind diejenigen Ausgaben, die unmittelbar mit dem Vorhaben in Zusammenhang stehen – in der Regel sind dies Ausgaben für Personal, Sachmittel oder Gegenstände wie unter anderem auch:
Ausgaben für die (Lehr-)Vertretungen von beteiligten HAW-Professorinnen und HAW-Professoren bei einer Freistellung durch die Hochschulleitung, sofern diese (Lehr-)Vertretungen nicht dem Stammpersonal zuzurechnen sind und die beteiligten HAW-Professorinnen und HAW-Professoren einen aktiven Teil im Projekt beitragen.
Notwendige Ausgaben für Patentanmeldungen und für Aktivitäten im Hinblick auf Normung und Standardisierung.
Ausgaben für die Vergabe von Forschungsaufträgen an Dritte (jedoch nicht an Projektpartner) in begründeten Ausnahmefällen bis zu einer Höhe von maximal 10 Prozent der zuwendungsfähigen Gesamtausgaben (ohne Projektpauschale).
Ausgaben für die Einholung eines Ethikvotums oder Fortbildungen zu ethischen, rechtlichen und sozialen Auswirkungen („Ethical, Legal and Social Implications“) der Forschungs- und Entwicklungsarbeiten.
Ausgaben für eine Rechtsberatung für die Erstellung von Datenschutzkonzepten, Lizenzierungen und Ähnlichem, sofern die Leistung nicht von der Hochschule/Hochschulverwaltung erbracht werden kann.
Ausgaben, welche im Förderzeitraum dazu dienen, den geplanten Forschungsprozess beziehungsweise die Ergebnisse der Öffentlichkeit zugänglich zu machen und über diese mit der Gesellschaft in den Austausch zu gehen. Die Wissenschaftskommunikation ist die allgemeinverständliche, dialogorientierte Kommunikation und Vermittlung von Forschung und wissenschaftlichen Inhalten an Zielgruppen außerhalb der Wissenschaft.
Ausgaben für die Publikation von Projektergebnissen im Förderzeitraum über Open Access (vorzugsweise ohne Embargofrist).
Reisemittel: In Ausnahme zur Regelung in den „Richtlinien für Zuwendungsanträge auf Ausgabenbasis“ (Antragsrichtlinie – Sächliche Verwaltungsausgaben F0844 bis F0846) können vorkalkulatorisch pauschal bis zu 3 Prozent der kalkulierten Personalausgaben (Ansatz Position 0812, Position 0817) als Mittel für Reisen (Inland/Ausland) in Höhe des errechneten Euro-Betrags angesetzt werden. Sollten die zuwendungsfähigen Personalausgaben bei der Prüfung des Antrags verändert werden, wird der Ansatz (in Euro) für die Reisen ebenfalls angepasst. Für alle Reisen gilt das jeweils von der Hochschule anzuwendende Reisekostengesetz. Die Reisen sind im Übrigen entsprechend der Antragsrichtlinie durchzuführen. CO2-Kompensationen für Reisen werden anerkannt.
Beschaffungen: Die vergaberechtlichen Vorgaben sind einzuhalten. Bei der Antragstellung für einzelne Beschaffungen bei Position 0850 (Investitionen) von 800 Euro bis 30 000 Euro (netto) wird auf die Vorlage von drei vergleichbaren Angeboten zur Plausibilisierung des einzelnen Ansatzes im Antrag verzichtet. Es bedarf im Antrag der Bestätigung der Hochschule, dass die vergaberechtlichen Regelungen bei Beschaffungen eingehalten werden.
Nicht zuwendungsfähig sind zum Beispiel Studiengebühren oder Sozialbeiträge sowie Ausgaben für Grundausstattung oder Infrastrukturleistungen (siehe hierzu auch BMBF-Vordruck 0027a „Richtlinien für Zuwendungsanträge auf Ausgabenbasis“; Bereich BMBF – Vordrucke für Zuwendungen [AZAP]).
Reiseausgaben für Konferenzen sind nur für das Projektpersonal (Position 0812 und 0817) vorzusehen. Ausgaben für Konferenzteilnahmen der beteiligten Professorinnen/Professoren sind nur in begründeten Ausnahmen zuwendungsfähig.
Reiseausgaben für Lehrvertretungen sind nicht zuwendungsfähig.
Die Schaffung von Räumlichkeiten zum Beispiel durch Bau, Kauf von Containern oder Anmietung von Räumen ist nicht förderfähig.
7.2 Einstufiges Antragsverfahren
Das Auswahlverfahren ist einstufig angelegt.
7.2.1 Vorlage und Auswahl von Projektanträgen
Die förmlichen Förderanträge sind dem Projektträger bis spätestens zum 2. Dezember 2024 in elektronischer Form über das Internetportal „easy-Online“ vorzulegen.
Die vollständige Richtlinie finden Sie hier.
]]>
Der Berthold Leibinger Innovationspreis zeichnet alle zwei Jahre Innovationen in der Lasertechnik aus, egal ob Strahlquelle oder Anwendung, Ergebnis einer Forschungseinrichtung oder der Industrieforschung.
Innovationen können als Bewerbung oder Nominierung eingereicht werden. Er ist offen für Einzelne und für Gruppen aus der ganzen Welt. Für die Einreichung ist eine Beschreibung der Technologie und der wirtschaftlichen Aspekte erforderlich.
Unter allen Bewerbungen und Nominierungen wählt die Jury acht Finalisten aus. Diese reisen auf Einladung der Berthold Leibinger Stiftung zur Jury-Sitzung, um ihre Arbeiten persönlich zu präsentieren. Finalisten und Preisträger erhalten Ihre Auszeichnung bei der Preisverleihung.
Preisgeld
1. Preis: 50.000 €
2. Preis: 30.000 €
3. Preis: 20.000 €
Zukunftspreis
Der Berthold Leibinger Zukunftspreis prämiert herausragende Meilensteine in der wissenschaftlichen oder industriellen Forschung unter Anwendung oder zur Erzeugung von Laserlicht. Er wird alle zwei Jahre zusammen mit dem Berthold Leibinger Innovationspreis verliehen.
Eine Bewerbung für den Zukunftspreis ist nicht möglich. Vorschlagsberechtigt sind neben ehemaligen Juroren und Preisträgern weltweit wissenschaftliche Organisationen sowie Fachverbände mit dem Schwerpunkt Laser oder Photonik.
Preisgeld
50.000 €
Alle Informationen zum Bewerbungs- / Nominierungsprozess finden Sie unter https://www.leibinger-stiftung.de/call
]]>Dieses Netzwerktreffen möchte gegen diese Probleme vorgehen und die Bedeutung von Frauen im Bereich Naturwissenschaften, Informatik, Mathematik und Technik herausstellen und fördern.
Der diesjährige Fokus des Netzwerktreffens liegt auf der Quantentechnologie. Herzlich willkommen sind sowohl Frauennetzwerke aus der Quantenbranche und den MINT-Fächern als auch ausstellende Unternehmen der Quantum Effects und hy-fcell. Außerdem freuen wir uns sehr über ein zahlreiches Erscheinen von Studierenden und Interessenten, die in diesem Bereich tätig sind.
Der Summit wird am 08.10.2024 im ICS der Messe Stuttgart von 12:00 bis 16:00 Uhr stattfinden.
Programm
13.00 – 13.30 Uhr
Begrüßung und Keynote
13.30 – 14.00 Uhr
Panel Diskussion: „Warum sind Frauennetzwerke wichtig und welchen Mehrwert bieten sie arbeitgebenden Unternehmen sowie Arbeitnehmerinnen und Arbeitsnehmern im modernen Arbeitsmarkt?“
14.00 – 15.00 Uhr
Netzwerk-Pitches und -Austausch (vorwiegend in Deutscher Sprache)
15.00 – 16.00 Uhr
Geführte Touren durch die Quantum Effects oder hy-fcell inkl. Panelvorträge
Nähere Informationen erhalten Sie hier.
]]>Eine große Herausforderung für Unternehmen ist es, den CO2-Ausstoß zu reduzieren. Dazu müssen sie den Energie- und Ressourcenverbrauch in der Produktion senken. Gleichzeitig fordert der Markt, die Entwicklung und Herstellung von Produkten zu beschleunigen. Eine mögliche Zukunftstechnologie, die beides parallel ermöglichen kann, ist die additive Fertigung, auch bekannt als 3D-Druck. Unter diesem Motto fand jetzt das siebte Treffen des Forschungsnetzwerks SmartPro an der Hochschule Aalen statt. Mehr als 80 SmartPro-Partner und weitere Interessierte aus Forschung, Industrie und Transfer nutzten die Gelegenheit, sich über aktuelle Entwicklungen auszutauschen und neue Impulse für die Zukunft der Produktion zu gewinnen.
Als besonderes Highlight des Treffens begeisterte Andreas Liebisch von der Carl Zeiss Jena GmbH mit seinem Keynote-Vortrag. Liebisch, ehemaliger Bachelor- und Masterstudent der Hochschule Aalen und mittlerweile Experte in der Zeiss Shared Production Unit, stellte darin ganz bewusst eine provokante Frage: „3D-Druck ist per se eine nachhaltige Fertigungstechnologie und der konventionellen Fertigung in jedem Fall überlegen – oder?“ In seinem Vortrag präsentierte er die zahlreichen Vorteile dieser Technologie, aber auch die damit verbundenen Herausforderungen. Anhand ausgewählter Anwendungsbeispiele zeigte er auf, wie additive Fertigung die subtraktive spanende Fertigung in der Industrie ersetzen und bereits heute zur Verbesserung der CO2-Bilanz, der Energiebilanz sowie der Produktionszeit beitragen kann. „Doch bis es soweit ist, ist in der Regel immer viel Überzeugungsarbeit zu leisten,“ hat Liebisch erfahren und resümiert: „Additive Fertigung einzuführen ist kein Sprint, sondern immer ein Marathon.“
Zu diesem Marathon gehört natürlich auch die Gewinnung qualifizierter Fachkräfte. Doch wo sollen sie herkommen? Darauf ging Rektor Prof. Dr. Harald Riegel in seiner Begrüßung ein: „Die Hochschule Aalen bildet Fachkräfte für die Technologien von Morgen aus, beispielsweise im Forschungsschwerpunkt Photonik. In der neu gegründeten Aalen School of Applied Photonics (AASAP) wird der wissenschaftliche internationale Nachwuchs vom Bachelorstudium bis zur Promotion an der Hochschule Aalen gefördert.“ So sei die Hochschule Aalen mit ihren zahlreichen und vielfältigen Forschungsgruppen im Bereich der additiven Fertigung gut aufgestellt, um die Gewinnung und Qualifizierung von Fachkräften für die Region zu fördern.
Praxisnaher Austausch zwischen Industrie und Forschung
Im Anschluss an die Keynote stellten viele dieser Forschungsgruppen in kurzen Pitches ihre Fortschritte rund um die Additive Fertigung vor. Prof. Dr. Markus Merkel, Dekan der Fakultät Maschinenbau und Werkstofftechnik, spann den Bogen von Materialien und Verfahren zu Produktion und Anwendungen anhand einer Mindmap und betonte die fakultätsübergreifende Bedeutung der Additiven Fertigung in Forschung, Lehre und Transfer. Welche Impulse SmartPro in den vergangenen Jahren gegeben hat, stellte Prof. Dr. Volker Knoblauch vor – stellvertretender Sprecher des Netzwerks und Prorektor Forschung der Hochschule: „SmartPro gibt uns die Möglichkeit, aktuelle Themen wie die Kreislaufwirtschaft kurzfristig in explorativen Projekten aufzugreifen und so die Basis für weiterführende Forschungsaktivitäten zu schaffen.“ Knoblauch machte deutlich, warum diese Ansätze für Wirtschaft, Politik und Gesellschaft so wichtig seien, und wie SmartPro unterschiedlichste Zielgruppen adressiert. „Ich bin davon überzeugt, dass wir dem Klimawandel nicht durch Verzicht, sondern nur durch technologische Lösungen erfolgreich begegnen können. Mit SmartPro wollen wir durch Material- und Technologieinnovationen einen spürbaren Beitrag dazu leisten.“
Die Veranstaltung bot auch praxisnahe Einblicke: Bei Laborführungen konnten die Gäste die Arbeitsgruppen des Netzwerks SmartPro kennenlernen, die Additive Fertigung in ihrer Forschung einsetzen. Dabei wurden auch die neuesten Geräte und Technologien vorgestellt, die diese innovative Fertigungsmethode ermöglichen. Promovierende und Studierende aus Masterstudiengängen wie Advanced Materials and Manufacturing hatten zudem die Möglichkeit, ihre Forschungsprojekte anhand von Postern mit Expertinnen und Experten aus der Industrie zu diskutieren. Dr. Kristina Lakomek aus dem SmartPro-Managementteam freute sich über das gelungene Treffen: „Die besten Ideen und Diskussionen entstehen vor Ort und von Mensch zu Mensch. Das heutige Treffen hat einmal mehr gezeigt, wie wichtig der direkte und interdisziplinäre Austausch für die gemeinsame Forschung ist.“
Weitere Informationen: Das Forschungsnetzwerk SmartPro der Hochschule Aalen arbeitet daran, die Energieeffizienz von Produkten zu erhöhen und Ressourcen zu schonen. Dafür entwickelt die Hochschule gemeinsam mit über 60 Partnern aus Industrie und Wissenschaft smarte Materialien und intelligente Technologien − als Grundlagen für ein nachhaltiges Morgen. Die Schwerpunkte liegen auf Energiewandlern, Energiespeichern und Leichtbau sowie den Methoden Additive Fertigung und Machine Learning. Seit 2017 fördert das Bundesministerium für Bildung und Forschung SmartPro mit rund zehn Millionen Euro. Photonics BW ist seit Beginn Partner von SmartPro.
]]>Aktuell entwickelt und baut das DLR im Projekt COMPASSO eine weltraumtaugliche Laseruhr. Ab 2027 wird diese auf der Internationalen Raumstation ISS für den Einsatz optischer Uhren auf Satelliten erprobt.
Zeit ist nicht gleich Zeit
Auf die Frage, was ist Zeit, sagte Albert Einstein einmal: "Zeit ist, was man an der Uhr abliest." Es kommt auf die Genauigkeit der Uhr an. Wie gut Satellitennavigation, Internet, Erdbeobachtung oder Finanzwesen funktionieren, hängt auch davon ab, wie exakt die notwendigen Zeitangaben bei der Datenübertragung sind. Satellitenuhren liefern Zeitsignale, mit denen sich beispielsweise Positionen auf der Erde bestimmen lassen oder Kommunikationsnetze synchronisiert werden.
Weltraumtaugliche Laseruhren können künftig genauere Zeitinformationen liefern, um Satellitendienste für Kommunikation und Navigation effizienter und präziser zu machen. Laseroptische Uhren sind aufgrund ihrer höheren Taktfrequenz rund hundertmal genauer als aktuelle Satellitenuhren auf Mikrowellenbasis.
Laseruhr erzielt Spitzenwert
Mit seiner führenden Expertise für Quantentechnologien in der Raumfahrt hat das DLR im Projekt COMPASSO die hochpräzise Laseruhr entwickelt. "Sie weicht weniger als 100 Pikosekunden pro Tag von der sogenannten Weltzeit ab. Eine Pikosekunde ist der Millionste Teil einer Millionstel Sekunde. Diese Abweichung entspricht einer Sekunde auf 30 Millionen Jahre", erklärt Prof. Claus Braxmaier vom DLR-Institut für Quantentechnologien in Ulm. "Wir schließen damit die Lücke zwischen der Genauigkeit von konventionellen Satellitenuhren und den großen, schweren High-End-Atomuhren, die in nationalen Metrologie-Instituten unsere Weltzeit festlegen."
Den Takt der Laseruhr gibt die Quantenphysik vor. Dazu wird die Wellenlänge eines Lasers auf eine bestimmte Schwingung von Jodmolekülen in einer Gaszelle abgestimmt. Der Takt dieser Schwingung hängt nur von den quantenmechanischen Eigenschaften des Jods ab. Mit dieser geräteunabhängigen Referenz lässt sich die hohe Genauigkeit der optischen Uhr erreichen.
Im Uhrenlabor des DLR-Instituts für Kommunikation und Navigation haben die DLR-Forscherinnen und -Forscher die Laseruhr bis zur aktuellen Genauigkeit weiterentwickelt und mit einer anderen Präzisionsuhr verglichen, einem sogenannten Wasserstoff-Maser. Dies ist eine Art Laser im Mikrowellenbereich. "Durch Überlagern der Zeitsignale beider Uhren können wir wie mit einer Stoppuhr die einzelnen Takte der Laseruhr zählen. Diese folgen mit einer Frequenz von 10 Megahertz aufeinander, das sind 10 Millionen Takte pro Sekunde", erläutert Claus Braxmaier. "So konnten wir die sowohl die Ganggenauigkeit als auch die Präzision unserer Laseruhr bestimmen. Je präziser eine Uhr ist, desto gleichmäßiger ist ihr Takt. Die Ganggenauigkeit gibt an, wie weit ihr Takt nach einer bestimmten Zeit vom Sollwert abweicht."
Laseruhren für globale Genauigkeit
Ziel des COMPASSO-Projekts ist, optische Schlüsseltechnologien für die künftige Satellitennavigation zu entwickeln. "Unsere Vision ist, die hohe Genauigkeit von Laseruhren für eine global verfügbare Zeitangabe zu nutzen. Damit ließe sich ein weltweit einheitlicher, präziser Zeitstandard realisieren", sagt Claus Braxmaier.
"Neue Generationen hochpräziser, weltraumtauglicher Laseruhren werden die Leistung von satellitengestützten Technologien erheblich verbessern", erklärt Dr. Stefan Schlüter vom Galileo Kompetenzzentrum des DLR. "Wichtige Bereiche sind beispielsweise das autonome Fahren, die Telekommunikation sowie der Katastrophenschutz und der Finanzsektor." Die Genauigkeit und die höhere Taktfrequenz laseroptischer Uhren soll zudem leistungsfähigere Kommunikationsnetzwerke mit höheren Datenraten ermöglichen.
Auf dem Weg zur ISS
Am DLR-Institut für Quantentechnologien entsteht aktuell eine weltraumtaugliche Version der Laseruhr, die 2027 zur Internationalen Raumstation (ISS) starten soll. Für den Einsatz im All muss die Uhr besonders leicht, kompakt, robust und gleichzeitig zuverlässig sein. Im realen Betrieb müssen Satellitenuhren mindestens 15 Jahre autonom und störungsfrei laufen.
„Wir wollen ein Flugmodell unserer Laseruhr auf der europäischen Bartolomeo-Plattform der ISS erproben. In diesem Außenlabor ist die Uhr typischen Weltraumbedingungen ausgesetzt. Sie muss im Vakuum sowohl bei direkter Sonneneinstrahlung sowie im Schatten der Erde im tiefkalten Weltraum ohne direkten Zugriff einwandfrei funktionieren“, erläutert Claus Braxmaier. „Herausfordernd ist dabei, die Dampfzelle mit dem Jodgas konstant auf 20 Grad Celsius zu halten – egal, ob sie gerade in der Sonne oder im Schatten ist. Die gleichbleibende Temperatur ist wichtig für die hohe Genauigkeit der Uhr. Wir wollen damit zeigen, dass sich unsere Laseruhr für die nächsten Generationen des europäischen Satellitennavigationssystems Galileo eignet.“
Noch sind die Komponenten der Laseruhr auf einem Labortisch aufgebaut. Im nächsten Schritt muss das Forschungsteam die Uhr möglichst kompakt zusammenbauen, damit alles auf die Größe von zwei Schuhkartons passt. Das Lasersystem enthält besonders temperaturstabile und alterungsbeständige Materialien, wie Zerodurglas. Ein hochstabiler Leichtbau garantiert, dass die Uhr die beim Raketenstart auftretenden Vibrationen und Kräfte aushält. Im Weltraum darf sich nichts verziehen, damit die Wellenlänge des Lasers für ein präzises Zeitsignal konstant bleibt. „Die Komponenten der Laseruhr haben bereits mehrere Belastungsproben erfolgreich bestanden, beispielsweise auf Höhenforschungsraketen oder im Fallturm“, sagt Dr. Thilo Schuldt vom DLR-Institut für Quantentechnologien.
Mini-Laseruhren eröffnen neue Anwendungen
Die Uhrentechnologie mit Gaszellen als Taktgeber hat noch einen weiteren Vorteil: Sie lässt sich weiter verkleinern. Laseruhren von der Größe eines Smartphones mit einer solchen Genauigkeit eröffnen völlig neue Anwendungen und wirtschaftliche Perspektiven.
Beispielsweise ließen sich mit Mini-Laseruhren ausgestattete Fahrzeuge im Straßenverkehr oder Lieferdrohnen in Städten mit einem gemeinsamen Navigationsmanagement vernetzen. Mit solchen Informationen über Verkehrsströme ließen sich Effizienz und Sicherheit erhöhen. „In Kombination mit Beschleunigungssensoren wäre mit bordeigenen Laseruhren zudem ein schlechter oder unterbrochener Satellitenempfang leicht zu überbrücken. Die hohe Signalstabilität der Uhr schafft die Grundlage, auch unter schwierigen Navigationsbedingungen exakte Positionsdaten zu berechnen, etwa zwischen Häuserzeilen oder in Tunneln“, erklärt Dr. Stefan Schlüter.
Die vollständige Pressemeldung finden Sie hier.
]]>The next-generation PIC feature a fully integrated, massively parallel detector system for coherent LiDAR. The recently fabricated photonic chip, which includes both a scanner and detector system on a single chip, was successfully tested at Scantinel. It demonstrated a significant per-pixel improvement in signal-to-noise ratio of about 20dB compared to previous solid-state LiDAR scanners.
This scanner-detector chip is a fully integrated, automotive-ready device that serves for automotive LiDAR Samples. The Sample includes a photonic chip and a low-noise electronics board. Due to the SNR (Signal-to-Noise Ratio) improvements, the system has achieved a tenfold reduction in LiDAR power consumption, paving the way for faster pixel rates. Compared to market systems using proprietary technology or two-mirror scanners, this generation features a solid-state scanning and fully leverages the advantages of FMCW technology over existing Time of Light (TOF) LiDAR systems.
The PIC production is fully transferred to high-volume standard CMOS fabrication, indicating the advanced maturity of the technology being developed.
"We believe in the efficient integration of proven technology building blocks using CMOS fabrication in combination with hybrid-packaging processes to enable highly reliable single-chip photonic LiDAR sensors for the automotive market. Additionally, Scantinel's integrated FMCW laser technology showcases a 10kHz linewidth and 10dBm in-waveguide power, which are critical parameters for an integrated optical amplification system."
- Vladimir Davydenko, Chief Scientist and Co-Founder of Scantinel.
“With this new PIC generation, we are underlining our worldwide leading position in highly parallelized FMCW Photonic Single Chip LiDAR based on standard CMOS. The new samples will be available for customers in Q4 2024."
- Dr. Michael Richter, CEO of Scantinel.
About Scantinel Photonics GmbH
Founded in 2019 and based in Ulm, Germany, Scantinel Photonics GmbH is a leading FMCW LiDAR company developing LiDAR technology for autonomous vehicles and robotics. Scantinel is supported by ZEISS Ventures, Scania Growth Capital, and Photon Ventures. For more information, visit www.scantinel.com.
Press Contact:
Scantinel Photonics GmbH
Salma El Maliki (Ms.)
Söflinger Str. 100, 89077 Ulm, Germany
salma.maliki(at)scantinel.com
www.scantinel.com
Location: Messe Stuttgart, ICS Room C 4.3
Date: Oktober 9, 2024
Time: 2.00 p.m. - 4.30 p.m.
We are looking forward to your participation. Please register here:
https://forms.office.com/e/k6EfCcTJyQ
Program
2:00 p.m. Welcome and Presentation of Networks and Public Funding Opportunities
Dr. Andreas Ehrhardt, Photonics BW & Dr. Alexander Heinrich, QuantumBW
2:10 p.m. Investor Matterwave Ventures Management GmbH, Dr. Carlotta Ficorella
2:20 p.m. Start-up Qruise GmbH, Dr. Shai Machnes
2:30 p.m. Investor Companisto GmbH, Christoph Schweizer
2:40 p.m. Start-up Delft Circuits BV, Dr. Artem Nikitin
2:50 p.m. Investor Plug and Play Germany GmbH, Alexander Schwerdt
3:00 p.m. Start-up Noisy Labs GmbH, Dr. Axel Schönbeck
Coffee Break & Networking
3:20 p.m. Start-up Pixel Photonics GmbH, Dr. Alexander Eich
3:30 p.m. Investor High-Tech Gründerfonds Management GmbH, Dr. Olaf Joeressen
3:40 p.m. Start-up Quantum Brilliance GmbH, Dr. Lykourgos Bougas
3:50 p.m. Investor Quantonation SAS, Olivier Tonneau
4:00 p.m. Start-up KEEQuant GmbH, Dr. Ulrich Eismann
4:10 p.m. Start-up Quant-X Security & Coding GmbH, Xenia Bogomolec
4:20 p.m. Investor EurA AG, Uwe Herrgott, Benjamin Raab
4:30 p.m. Start-up SBQuantum, Dr. David Roy-Guay
VC Matchmaking & Business Networking
----------------------------------
For Start-ups:
As a start-up in the field of quantum technologies, you have the opportunity to present your company in the classic pitch deck format:
For Investors:
The event offers investors the unique opportunity to get to know and invest in the most innovative and promising start-ups in the field of quantum technologies:
Be part of this unique event and shape the future of quantum technologies with us. To participate, contact: salzinger(at)photonicsbw.de
For more information, please visit this page.
In vielen Anwendungen wird Metall mit kohlenstofffaserverstärktem Kunststoff (CFK) verbunden, um sowohl Stabilität zu gewährleisten als auch eine deutliche Gewichtsreduzierung zu erreichen. Doch dabei gibt es ein großes Problem, wie Sara Nester, wissenschaftliche Mitarbeiterin an der Institut für Materialforschung Aalen (IMFAA) und SmartPro-Forscherin, erklärt: "Am Ende des Lebenszyklus gibt es keine wirklich nachhaltige Möglichkeit, die beiden enthaltenen Materialien zu trennen. Sie werden oft mit Verfahren zusammengefügt, die irreversibel sind, d.h. für die es keinen etablierten umgekehrten Prozess gibt. Daher können bisher diese Materialien kaum recycelt werden und müssen weggeworfen werden."
Nester möchte das ändern. "Ich bin sehr daran interessiert, das Recycling im Leichtbau stärker in den Vordergrund zu rücken. Dafür forsche ich an Verfahren, die zwar Materialien fügen, aber so, dass sie danach wieder getrennt werden können." Die 27-Jährige ist 2019 nach Aalen gezogen, um an der Hochschule Aalen den Masterstudiengang Advanced Materials and Manufacturing zu absolvieren. Seitdem forscht sie am IMFAA, zunächst als studentische Hilfskraft, derzeit arbeitet sie in zwei SmartPro-Projekten: Smart-LIGHT und SmartCycle. Nun möchte sie dort über den neu gegründeten Promotionsverband Baden-Württemberg an der Hochschule Aalen promovieren.
Forschungsergebnisse auf Verbund-Symposium präsentiert
Kürzlich reiste sie nach Freiburg, um die neuesten Ergebnisse des Smart-LIGHT-Projekts auf dem Symposium Verbund 2024 in einem Vortrag zu präsentieren. Das Symposium wurde von der Deutsche Gesellschaft für Materialkunde e.V. (DGM) organisiert und zog rund 150 Forschende aus dem In- und Ausland an, die sich mit Verbundwerkstoffen und Werkstoffverbunden beschäftigen. Die vorgestellten Forschungsergebnisse sind eine Teamleistung zwischen Florian Zeller und ihr, unter der Leitung von Prof. Dr. Volker Knoblauch, Dr. Dieter Meinhard und Prof. Dr. Iman Taha.
Sie haben ein Verfahren untergesucht, um eine Verbindung zwischen Aluminium und CFK zu entwickeln, die später wieder aufgelöst werden kann. Die innovative Idee: Zusammen mit dem LaserApplikationsZentrum (LAZ) haben sie die Aluminiumoberfläche vor der Verbindung mit CFK mit einem Nahinfrarot-Laser bearbeitet und so Mikrostrukturen auf dem Aluminium erzeugt. So funktioniert es: Beim Fügen wird das CFK erhitzt und auf das Aluminium aufgebracht. Die Polymermatrix im CFK schmilzt und füllt die Mikrostrukturen in der Aluminiumoberfläche aus, wodurch eine feste Verbindung entsteht. Nester beschreibt: „Wir haben dann Tests durchgeführt, um zu zeigen, dass die Fügeverbindung genauso robust ist wie durch vergleichbare Methoden, zum Beispiel mit Klebstoff. Der klare Vorteil unseres Verfahrens ist aber, dass wir, wenn das Hybridbauteil auf den Schmelzpunkt der Polymere erhitzt wird, die Materialien trennen und recyceln können - bei Klebstoffen ist das meist nicht möglich.“
Und wie praktikabel ist es, diese Teile wieder in die Produktionskette zurückzuführen? Nester berichtet: "Nun sind wir noch einen Schritt weiter gegangen und haben das Aluminium und CFK nach der Trennung wieder zusammengefügt. Wir haben festgestellt, dass die strukturelle Integrität zu 80% erhalten blieb, ein großartiges erstes Ergebnis. Das zeigt, dass diese Teile nicht nur für andere Anwendungen recycelt, sondern – natürlich nach weiterer Forschung – auch wiederverwendet werden können!"
Impulse für die wissenschaftliche Arbeit
Für Nester war die Teilnahme am Symposium von großem Wert. Sie resümiert: „Mein Vortrag war Teil einer Session zum Thema Recycling, und es war sehr aufschlussreich, Fragen und Feedback von Wissenschaftlerinnen und Wissenschaftlern zu erhalten, die sich mit den aktuellen Fragen zum Recycling von Hybridmaterialien beschäftigen.“ Sie hatte auch die Gelegenheit, die Labore des Instituts für Nachhaltige Systemtechnik (INATECH) der Universität Freiburg zu besichtigen und die Forschungsschwerpunkte näher kennenzulernen.
Nach diesem gelungenen wissenschaftlichen Austausch kehrte sie inspiriert nach Aalen zurück. Zuerst gab es etwas zu feiern: Ein wissenschaftlicher Artikel über ihre Projektergebnisse wurde kürzlich in der Fachzeitschrift Composite Interfaces veröffentlicht – Herzlichen Glückwunsch! Nester sagt: „Aber dann wieder zurück ins Labor, um das Projekt voranzutreiben. Neben der Fortführung meiner wissenschaftlichen Arbeit und Qualifizierung über die Angebote der Research Academy der Hochschule Aalen ist mein nächster Schritt, meinen Antrag auf Annahme im Promotionsverband einzureichen.“
Kurzinfo SmartPro
Das Forschungsnetzwerk SmartPro der Hochschule Aalen arbeitet daran, die Energieeffizienz von Produkten zu erhöhen und Ressourcen zu schonen. Dafür entwickelt die Hochschule gemeinsam mit über 60 Partnern aus Industrie und Wissenschaft smarte Materialien und intelligente Technologien − als Grundlagen für ein nachhaltiges Morgen. Die Schwerpunkte liegen auf Energiewandlern, Energiespeichern und Leichtbau sowie den Methoden Additive Fertigung und Machine Learning. Seit 2017 fördert das Bundesministerium für Bildung und Forschung SmartPro mit rund 10 Millionen Euro.
]]>Nachwuchswissenschaftler im Vordergrund
Kleefoot ist wissenschaftlicher Mitarbeiter am LAZ und strebt eine Promotion an. „In meiner Forschung verwende ich extrem kurze Laserpulse, um präzise Mikrostrukturen auf Oberflächen zu erzeugen,“ erklärt Kleefoot. Diese Methode – die sogenannte Lasermikrostrukturierung – wird im SmartPro-Projekt Smart-LIGHT zur Herstellung hybrider Bauteile für den Leichtbau eingesetzt, um eine bessere Verbindung zwischen den Komponenten zu erreichen. Ein Anwendungsbeispiel für solche Bauteile findet sich in der Luftfahrt. Um leichtere und gleichzeitig stabilere Flugzeuge zu ermöglichen, werden Hybridbauteile aus kohlenstofffaserverstärktem Kunststoff (CFK) und Metall hergestellt. Hier kann eine Lasermikrostrukturierung als Vorbehandlung die Fügeverbindung der Werkstoffe deutlich verbessern.
Ein weiterer Forschungsbereich, in dem Kleefoot gemeinsam mit dem Institut für Materialforschung Aalen (IMFAA) Mikrostrukturen mit dem Laser erzeugt, ist die Batterieforschung. Dort können Mikrostrukturen zu einer schnelleren Ladefähigkeit von Lithium-Ionen-Batterien beitragen und diese damit leistungsfähiger machen. Die eingebrachten Strukturen können damit zu einer effizienteren und nachhaltigeren Elektromobilität beitragen. Kleefoot sagt: „Wir versuchen, die Mechanismen des Laserstrukturierungsprozesses besser zu verstehen. Aus den Ergebnissen können wir Handlungsempfehlungen ableiten, damit diese Strukturierungsprozesse skaliert und idealerweise in der Batterieproduktion eingesetzt werden können.“ Diese Ergebnisse präsentierte Kleefoot in einem Vortrag auf der SPIE Photonics West, um diese im Anschluss mit dem breiten wissenschaftlichen Publikum zu diskutieren.
Horizonterweiterung: Fachlich wie persönlich
Natürlich gibt es bei Konferenzen immer mehr zu gewinnen als zu geben. „Der Austausch mit anderen Forschenden hat neue Ideen und Richtungen aufgezeigt, die ich in meinen Projekten weiterverfolgen kann,“ sagte Kleefoot. „Zum Beispiel habe ich von neuen Sensorkonzepten erfahren, in denen Künstliche Intelligenz (KI) integriert ist, und die dadurch noch höhere Präzision zulassen. Das ist ein spannender Fortschritt, den ich vielleicht für meine Forschung nutzen kann.“
Für Kleefoot war die Reise nach Kalifornien nicht nur eine bereichernde wissenschaftliche Erfahrung, sondern auch eine Gelegenheit, eine andere Kultur zu erleben und ein Stück des amerikanischen Westens zu erkunden. Er überlegt: „Ich war vor allem von der netten und zuvorkommenden Mentalität der Menschen begeistert.“ In San Francisco besichtigte er die Golden Gate Bridge, fuhr mit den Cable Cars und speiste in San Franciscos berühmter Chinatown – wo übrigens der Glückskeks erfunden wurde. Und welches Schicksal stand in seinem Glückskeks? Er lächelt: „Nur so viel … Es geht nun wieder ins Labor, um den Impulsen der Konferenz weiter nachzugehen.“
Kurzinfo SmartPro
Das Forschungsnetzwerk SmartPro der Hochschule Aalen arbeitet daran, die Energieeffizienz von Produkten zu erhöhen und Ressourcen zu schonen. Dafür entwickelt die Hochschule gemeinsam mit über 60 Partnern aus Industrie und Wissenschaft smarte Materialien und intelligente Technologien − als Grundlagen für ein nachhaltiges Morgen. Die Schwerpunkte liegen auf Energiewandlern, Energiespeichern und Leichtbau sowie den Methoden Additive Fertigung und Machine Learning. Seit 2017 fördert das Bundesministerium für Bildung und Forschung SmartPro mit rund 10 Millionen Euro.
]]>In den drei Tagen der Konferenz präsentierten zahlreiche renommierte Redner/innen ihre Arbeiten und Erkenntnisse, darunter folgende Plenar-Sprecher:
Während der Konferenz wurden zwei parallele Sessions abgehalten, die unterschiedliche Aspekte der Lasertechnologie behandelten:
Das soziale Programm beinhaltete einen Besuch des Gottlieb-Daimler-Memorials und ein festliches Konferenzdinner im „Kleinen Kursaal“. Außerdem gab es eine geführte Tour durch die Labore des IFSW auf dem Campus Vaihingen der Universität Stuttgart.
Die SLT 2024 war erneut eine hervorragende Plattform für den Austausch und die Vernetzung unter den Teilnehmern. Die vorgestellten Forschungsergebnisse und Innovationen zeigten die dynamische Entwicklung der Lasertechnologie und deren Bedeutung für verschiedene Industriezweige. Die Organisatoren danken allen Teilnehmern und Referenten für ihre wertvollen Beiträge und freuen sich bereits auf die nächste Ausgabe der Stuttgarter Lasertage.
Weitere Informationen finden Sie unter: www.slt.uni-stuttgart.de
]]>Zentraler Bestandteil war eine Posterausstellung zu aktuellen Forschungsprojekten, die durch die Baden-Württemberg Stiftung finanziert werden. Die Photonik war unter anderem vertreten mit Forschungsprojekten des Instituts für Technische Optik der Universität Stuttgart und zeigte auch gelungene Verwertungsaktivitäten aus Forschungsergebnissen früherer Förderprogramme auf. Hierzu zeigte das ITO den Weg der Tilted Wave Interferometrie von der Grundlagenforschung bis zum Produkt. Zudem präsentierten sich erfolgreich ausgegründete Unternehmen wie die TGU LightPulse, die Printoptix GmbH sowie die durch EXIST geförderte Prio Optics.
Umrahmt wurden die Forschungsergebnisse durch spannende Fachvorträge zu hochaktuellen Themen wie KI in der Physik (Prof. Dr. Tilman Plehn), Alzheimer Forschung (Prof. Dr. Ulrike Müller) und Robotersystemen in der Medizintechnik (Prof. Dr. Jan Stallkamp).
Der inzwischen neunte Forschungstag widmete sich außerdem der Frage, wie Forschung in Zukunft bewertet werden kann und welche strukturellen Weichen gestellt werden müssten, gerade in Zeiten eines teilweise erodierenden Vertrauens in die Wissenschaft. Dazu diskutierten Prof. Dr. Martin Hartmann, Autor von „Vertrauen – Die unsichtbare Macht“, Professor für Praktische Philosophie und designierter Rektor der Universität Luzern, Dr. Sybille Hinze, Leiterin des Centers for Open and Responsible Research und CoARA-Beauftragte der Berlin University Alliance, Prof. Dr. Amrei Bahr, Juniorprofessorin für Philosophie der Information und Technik, Universität Stuttgart und Prof. Dr. Peter-André Alt, Geschäftsführer der Wübben Wissenschaftsstiftung gGmbH.
Abgerundet wurde das Programm durch Exponate aus der autonomen Robotik, spannende Erfindungen, umfassende Informationen zum Innovationsmanagement in der Forschung, und einer Vorstellung des Wissenschaftsbarometers 2023, der bedeutendsten Meinungsumfrage zum Vertrauen in die Wissenschaft.
]]>Nach der Begrüßung von Dr. Wenko Süptitz, Leiter Photonik bei SPECTARIS, und Dr. Andreas Ehrhardt, Vorstand OptecNet Deutschland, und Vorstellung von PHOTONICS GERMANY stellte Dr. Katrin Kobe, CEO Bosch Quantum Sensing, die Bedeutung der Photonik und die Schlüsselanwendungen der Quantensensorik. Darüber hinaus gab sie konkrete Handlungsempfehlungen für die Zukunftsfähigkeit der Photonik und Quantentechnologien in Deutschland.
Moderiert wurde der PHOTONICS GERMANY Zukunftsgipfel von Anke Siegmeier, Geschäftsführerin OptoNet, die anschließend zu Dr. Thomas Rettich, Executive Board Member von Photonics21, überleitete. Er gab einen Überblick zur europäischen Forschungsförderung der Photonik im Rahmen der Technologieplattform „Photonics21“ und stellte einige erfolgreiche Projekte vor. Er wies darauf hin, dass eine Mitwirkung bei der Gestaltung des neuen EU-Forschungsrahmenprogramms über Photonics21 möglich ist und lud zur Mitwirkung ein.
Im Anschluss wies Dr. Peter Soldan, Leiter Quantensysteme VDI Technologiezentrum, auf aktuelle und geplante Förderprogramme des Bundesministeriums für Bildung und Forschung (BMBF) hin und betonte, dass die Photonik und Quantentechnologien gleichermaßen adressiert sind. Darüber hinaus stellte er die Handlungsempfehlungen des PHOTONICS GERMANY Positionspapiers aus 2022 vor und erläuterte, welche Themenfelder vom BMBF aufgegriffen wurden.
Michael Kellner, Parlamentarischer Staatssekretär beim Bundesministerium für Wirtschaft und Klimaschutz (BMWK) richtete lobende Worte an die Teilnehmer: „Die Photonik ist eine Branche, die wächst, die agil ist, die vorangeht. Herzlichen Glückwunsch!“. In seinem Vortrag ging er auf die Themenfelder Ausfuhrkontrolle, Forschungsförderung, Fachkräftegewinnung aus dem Ausland sowie Bürokratie ein und erläuterte, dass es intensive Bemühungen der Bundesgremien gebe, hier substanzielle Verbesserungen zu erreichen.
Dr. Andreas Ehrhardt stellte anschließend Glanzlichter und Perspektiven der Photonik und Quantentechnologien vor. Im Weiteren ging er auf die aktuelle Lage der Photonik sowie die wirtschaftlichen Randbedingungen ein und nannte dringende politische Handlungsbedarfe, um weiterhin eine internationale Spitzenposition einnehmen zu können. Die genannten Punkte sollen im Nachgang stellvertretend für die deutsche Photonik-Branche in offenen Briefen an das BMWK und an das BMBF gesendet werden. Die Mitgestaltung der Schreiben ist über SPECTARIS sowie über die regionalen Innovationsnetze von OptecNet Deutschland möglich.
Prof. Dr. Volker Sorger, Professor University of Florida, hob die Bedeutung der Photonik für den US Chips Act hervor und gab Einblicke in die Aktivitäten an der University of Florida. In diesem Zusammenhang werden auch zahlreiche Chancen für Geschäftsbeziehungen für deutsche Unternehmen gesehen.
Die Technologie-Themen aus Sicht des Forschungsausschusses des Bundestags standen im Vortrag von Dr. rer. nat. Holger Becker, Mitglied des Bundestags, im Vordergrund. Der Frage „Kann Deutschland Innovation?“ näherte er sich mit Beispielen zu Strategiepapieren, die die Photonik berücksichtigen, einerseits und Aspekten zu aktuellem Handlungsbedarf andererseits. Für mehr Sichtbarkeit der Photonik bei der Politik wären Leuchtturmprojekte hilfreich. Am Rande erwähnte er, dass von den 735 Abgeordneten des Bundestags lediglich 30 einen MINT-Abschluss hätten, was für die Umsetzung von Hochtechnologiethemen nachteilig sei.
Anschließend diskutierten Dr. Holger Becker, Dr. Katrin Kobe, Prof. Dr. Karl Leo und Dr. Peter Soldan die Zukunftsfähigkeit der Photonik-Branche in Deutschland, moderiert von Jörg Mayer, Geschäftsführer SPECTARIS. Die Podiumsdiskussion widmete sich den Fragen, wie die Photonik-Branche mit den zahlreichen Herausforderungen, u.a. zunehmenden Handelsbarrieren, geopolitischen Konflikten, Fachkräftemangel, hohen Steuerlasten, Energiekosten und Sozialabgaben sowie überbordender Bürokratie umgeht und was sie benötigt, um in Deutschland und weltweit auf Erfolgskurs zu bleiben.
Die technologischen Perspektiven wurden schwerpunktmäßig am Nachmittag beleuchtet: Prof. Dr. Karl Leo, Professor für Optoelektronik Technische Universität Dresden, stellte organische Halbleiter von der Laborkuriosität hin zum heutigen Massenprodukt vor.
Dr. Michael Overdick, VP Technology Management SICK AG, widmete sich in seinem Vortrag der Optischen Sensorik und Künstlichen Intelligenz in der Automatisierung und Logistik.
Einblicke in die Grundlagen, Herausforderungen und Perspektiven der Quantentechnologien gab anschließend Prof. Dr. Joachim Ankerhold, Direktor des Instituts für Komplexe Quantensysteme der Universität Ulm. Er betonte die Bedeutung von Netzwerken aus Unternehmen, Forschungseinrichtungen und weiteren Partnern, um neue Technologien gemeinsam voranzutreiben.
Prof. Dr. Christoph Runde, Geschäftsführer VDC Fellbach, stellte anschließend die unterschiedlichen Technologien und Potenziale des Industrial Metaverse für die Photonik und Quantentechnologien vor.
Zum Abschluss des Zukunftsgipfels gab Prof. Dr. Martin Roth, Universität Potsdam, einen Exkurs zu den Innovationspotenzialen der Astrophysik und stellte industrielle Anwendungen vor, denen Entwicklungen aus der Raumfahrt und der Astronomie zugrunde liegen.
Wir bedanken uns ganz herzlich bei unseren Sponsoren fiberware und ZEISS, die einen wertvollen Beitrag zum Gelingen der Veranstaltung geleistet haben sowie bei OptecBB für die finanzielle Unterstützung des Vorabend-Events. Außerdem danken wir den Referentinnen und Referenten für die spannenden Beiträge sowie allen Teilnehmerinnen und Teilnehmern für den intensiven Austausch.
Nähere Informationen finden Sie auch unter: www.photonics-germany.de
]]>Die Quantum Effects wird als wichtigste jährlich stattfindende Veranstaltung für anwendungsorientierte Quantentechnologien entwickelt und soll die europäische Präsenz bei diesem Zukunftsthema weiter ausbauen. Das umfassendes europäischen Quanten-Ökosystem aus Industrie, Wissenschaft und Politik sowie Netzwerken und Investoren soll hier zusammengeführt werden. Die Schwerpunkte Computing & Enabling Technologies, Software, Sensing und Communication werden 2024 durch die Themen künstliche Intelligenz und High Performance Computing ergänzt.
Die Quantum Effects Academy wird Workshops und Experimente für Studierende, Schülerinnen und Schüler anbieten sowie geführte Touren für alle Interessierten. Für Startups organisiert Photonics BW gemeinsam mit Quantum BW eine Pitch- und Networking Session mit Investoren. Die Verleihung des Quantum Effects Awards, initiiert und mitorganisiert von Photonics BW und OptecNet Deutschland. zeichnet herausragende Innovationen aus, die in unterschiedlichen Branchen Anwendung finden, individuelle Dienstleistungen ermöglichen und neue Perspektiven eröffnen.
Im Anschluss folgte ein Gespräch mit Stephanie Fleischmann (Leiterin Geschäftsbereich Strategie und internationale Beziehungen der Wirtschaftsförderung Region Stuttgart) über die Bedeutung der Quantentechnologien für die Region.
Dr. Nicole Hoffmeister-Kraut, Ministerin für Wirtschaft, Arbeit und Tourismus des Landes Baden-Württemberg, betonte in einer Video-Botschaft wie wichtig die technologische Entwicklung für Baden-Württemberg ist: „Quantentechnologien bieten viele Chancen für neue Anwendungen in Industrie und Gesellschaft, beispielsweise in der Informationsverarbeitung, für höchstpräzise Messverfahren oder die Simulation komplexer Systeme.“
„Quantentechnologien werden nicht nur dazu beitragen, bestehende Prozesse zu verbessern, sondern eröffnen auch neue Zukunftschancen in den Bereichen MedTech, Mobility und vielen mehr. Sie haben das Potenzial, unsere Gesellschaft und Wirtschaft zu verändern. Dafür gilt es – insbesondere im Bereich der Quantensensorik – als nächstes, die Kommerzialisierung zu meistern. Hierfür ist ein umfassendes Ökosystem entlang der kompletten Wertschöpfungskette in Europa wichtig. Umso mehr freue ich mich, dass wir die internationale Veranstaltung „Quantum Effects“ mitgestalten, die im zweiten Jahr einen besonderen Fokus auf Anwendungsorientierung legt.“, so Dr. Katrin Kobe, CEO von Bosch Quantum Sensing, Hostingparter der Quantum Effects.
„Das ‚Quantum Länd‘ Baden-Württemberg steht insbesondere im Bereich der Quantensensorik mit hervorragender Wissenschaft, einer starken Industrie und Leuchttürmen wie QuantumBW und dem Zukunftscluster QSens international hervorragend da“, betonte Prof. Dr. Jens Anders, Leiter des Instituts für Intelligente Sensorik und Theoretische Elektrotechnik der Universität Stuttgart.
Der Auftakt der Quantum Effects 2023 war mit 2334 Teilnehmerinnen und Teilnehmern überaus erfolgreich, fast jede fünfte Person kam dabei aus dem Ausland.
]]>Reiche Deine Abschlussarbeit rund um Embedded Vision und FPGA-Technologie für den hema visioneers award ein. hema prämiert interessante Projekte und Umsetzungen sowie herausragende Leistungen, ausgewählt und bewertet von einer unabhängigen und hochkarätigen Fachjury.
Was ist der visioneers award?
Der visioneers award ist ein Nachwuchswettbewerb für Studierende und angehende Ingenieurinnen und Ingenieure, die sich kreativ mit einer technischen Aufgabenstellung aus der Welt der Elektronik auseinandersetzen.
Das Ziel ist die Förderung und Prämierung herausragender Leistungen in Abschlussarbeiten rund um den Themenkomplex Embedded Vision Anwendungen auf FPGA Basis.
Namensgeber des Awards sind die hema visioneers; visioneers sind engagiert, neugierig und technologieorientiert. Wir scheuen keine Herausforderung und stellen jederzeit sicher, dass unsere Partner High-Tech Elektroniken von uns erhalten. Vom Auszubildenden bis zur Geschäftsführung setzen wir uns dafür ein, hema zu einer einladenden und respektvollen Gemeinschaft zu machen.
Veranstalter des Awards ist die hema electronic GmbH.
Wer kann teilnehmen?
Studierende an Hochschulen aus Deutschland, Österreich und der Schweiz, die aktuell an Ihrer Abschlussarbeit für das Studienjahr 2024/25 schreiben, können teilnehmen.
Was für Abschlussarbeiten kann ich einreichen?
Deine Abschlussarbeit beschäftigt sich mit dem Bereich Embedded Vision. Als Hardware setzt du einen FPGA ein. Es können Hardware- und Software-Themen eingereicht werden.
Aus welcher Branche dein Projekt kommt, spielt keine Rolle. Deine Idee und deren Umsetzung sollen aber zeigen, wie innovative Elektronik unser Leben leichter und vielleicht sogar unsere Welt ein kleines bisschen besser und sicherer machen kann.
Was kann ich gewinnen?
Die drei besten Abschlussarbeiten bekommen Geldpreise, wertvolle Kontakte zu Unternehmen in der Branche und jede Menge Aufmerksamkeit in den Medien.
Die Verleihung des visioneers award findet auf der embedded world 2025 in Nürnberg statt.
Wie werden die Sieger:innen ermittelt?
Eine Fachjury aus der Elektronikbranche bewertet alle abgegebenen Arbeiten anhand einer einheitlichen Matrix und bestimmt so die drei Sieger:innen. Bei der Bewertung sind folgende Aspekte wichtig:
Alles klar? Dann melde Deine Arbeit an! Ganz einfach!
Du reichst uns den Titel und einen Abstract deiner Abschlussarbeit per E-Mail bis zum 31.12.2024 ein. Nach einem kurzen Check erhältst du innerhalb einer Woche nach Einreichung eine Teilnahmebestätigung. Abgabetermin für die fertige Abschlussarbeit ist dann der 28.02.2025. Nicht abgeschlossene Arbeiten können nicht berücksichtigt werden – bitte reiche Deine Arbeit in diesem Fall im kommenden Jahr erneut ein.
]]>Kontakt:
Sonja Wiesel, M.A.
Leitung Hochschulkommunikation und Öffentlichkeitsarbeit
Ostbayerische Technische Hochschule (OTH)
Amberg-Weiden
Kaiser-Wilhelm-Ring 23
92224 Amberg
Tel. (09621) 482-3135
Email: s.wiesel@oth-aw.de
Eröffnet wurden die beiden Veranstaltungstage durch Ministerpräsident Winfried Kretschmann sowie Ministerin Dr. Nicole Hoffmeister-Kraut, Dr. Anna Christmann (BMWK) und Dr. Anke Pagels-Kerp (DLR). Besonders betont wurde die einzigartige Chance für Baden-Württemberg sich in dem aufkeimenden Markt frühzeitig zu positionieren.
Anschließend führten Keynote-Präsentationen und Podiums-Diskussionen zu den Anwendungen und Herausforderungen des Quantencomputings durch zwei Tage intensiven Austausch. Akteure aus der Politik diskutierten hier mit Vertretern aus Industrie und Wissenschaft zu Skalierungsfragen wie Standardisierung, Export-Richtlinien, Fördermaßnahmen und den essentiellen Schritten auf dem Weg zu einem profitablen Ökosystem.
Neben dem Computing stand auch die Simulation physikalischer Systeme im Fokus, bei der bereits heute verfügbare Quantencomputer einen Mehrwert liefern können, z.B. in der Batterie- und Material-Forschung. Der Nachmittag des zweiten Tages stand ganz im Zeichen der Enabling Technologien. Organisiert von QuantumBW diskutierten hier zunächst Prof. Tilman Pfau (Uni Stuttgart), Prof. Rüdiger Quay (Fraunhofer IAF) und Prof. Kai Bongs (DLR) zusammen mit Dr. Volkmar Denner (Sprecher „Wirtschaft“, QuantumBW) und Dr. Michael Marthaler (CEO, HQS Quantum Simulations) welche Meilensteine in den kommenden Jahren realistisch erreichbar sind, vor allem in der Sensorik und der Simulation.
Im Anschluss präsentierten sich namhafte Vertreter der Enabling Technologien wie Stuttgart Instruments und das IFSW im offenen Austausch den aufstrebenden Startups der Branche wie Advanced Quantum, Diatope und Quantum Brilliance. Photonics BW konnte die Interessen der Mitglieder in diesem Rahmen vertreten und die Kontakte in das junge Ökosystem erweitern.
]]>Kontakt:
SphereOptics GmbH
Gewerbestrasse 13
82211 Herrsching
E-Mail: info@sphereoptics.de
Internet: www.sphereoptics.de
Der 16. Mai wurde als Datum gewählt, da der Physiker Theodore Maiman am 16. Mai 1960 den ersten funktionstüchtigen Laser entwickelte.
Der Internationale Tag des Lichts verfolgt folgende Ziele:
Alle Informationen rund um den International Day of Light finden Sie unter https://www.lightday.org/
Dort erhalten Sie zahlreiche Materialien und Inspiration rund um das Thema Licht.
]]>1 Förderziel, Zuwendungszweck, Rechtsgrundlage
Lebenswissenschaftliche Innovationen sind Treiber des gesellschaftlichen und medizinischen Fortschritts. Von besonderer Bedeutung ist dabei der Übergang von Ideen aus der akademischen Grundlagenforschung in die Anwendung, beispielsweise durch die Ausgründung eines Start-ups.
Hinsichtlich dieses Transfers sind lebenswissenschaftliche Forschungsprojekte mit zahlreichen Herausforderungen konfrontiert – darunter lange Entwicklungszeiten, großes Ausfallrisiko, hohe regulatorische Anforderungen und hoher Kapitalbedarf. Privates Risikokapital steht in der Frühphase meist nicht in ausreichendem Maß zur Verfügung.
Hier setzt die Richtlinie an, indem gründungswillige Wissenschaftlerinnen und Wissenschaftler auf die wirtschaftliche Verwertung ihrer Forschungsergebnisse durch eine Unternehmensgründung vorbereitet und bei der nachhaltigen Weiterentwicklung des Forschungsprojekts in einer Ausgründung begleitet werden.
1.1 Förderziel
Mit dieser Fördermaßnahme verfolgt das Bundesministerium für Bildung und Forschung (BMBF) das Ziel, die Gründungsaktivitäten in den Lebenswissenschaften zu steigern sowie den Transfer aus der Grundlagenforschung in die Anwendung zu beschleunigen und effizienter zu gestalten.
Die Fördermaßnahme setzt zentrale Aspekte der Zukunftsstrategie Forschung und Innovation und der Start-up-Strategie der Bundesregierung um. Die Zukunftsstrategie Forschung und Innovation verfolgt die Ziele, das Innovationspotenzial der Gesundheitswirtschaft zu steigern, den Transfer zu unterstützen und den Biotechnologie-Standort Deutschland auszubauen. Ein zentrales Handlungsfeld der Start-up-Strategie der Bundesregierung ist die Erleichterung von Start-up-Ausgründungen aus der Wissenschaft. Die Neuauflage der Fördermaßnahme GO-Bio ist dort als prioritäre Maßnahme benannt. Thematisch eingebettet ist GO-Bio next weiterhin in das Rahmenprogramm Gesundheitsforschung der Bundesregierung.
1.2 Zuwendungszweck
Der Verwertungserfolg akademischer Forschungsergebnisse ist stark abhängig vom Reifegrad einer Technologie. Nur verhältnismäßig weit entwickelte Technologien bieten ein Chancen/Risiko-Profil, das für Kapitalgeber oder Lizenznehmer interessant ist. Dies führt insbesondere in den Lebenswissenschaften häufig dazu, dass Forschungsergebnisse aufgrund der noch fehlenden Reife nicht in die Anwendung überführt werden können.
Zweck der Förderung im Rahmen von GO-Bio next ist es daher, Forschungsansätze mit hohem Wertschöpfungspotenzial in einer eigenständigen Arbeitsgruppe in Deutschland so weiterzuentwickeln, dass sie im Anschluss wirtschaftlich verwertet werden und die Basis einer erfolgreichen Unternehmensgründung bilden können. Im Ergebnis weisen die Forschungsansätze durch die erfolgreich absolvierten Entwicklungsschritte einen höheren Reifegrad auf und sind durch dieses „De-Risking“ für potenzielle Investoren attraktiv. Damit wird die Brücke zwischen akademischer Forschung und industrieller Entwicklung in den neu gegründeten Unternehmen geschlagen. Erfolgreiche Ausgründungen aus Universitäten oder außeruniversitären Forschungseinrichtungen werden in der zweiten Förderphase der Maßnahme in Bezug auf die branchenspezifischen Herausforderungen junger Unternehmen unterstützt.
Zu einer Skizzeneinreichung bei GO-Bio next aufgerufen sind ausdrücklich auch solche Forschungsprojekte, die auf Vorhaben der Grundlagen- und Validierungsforschung (zum Beispiel GO-Bio initial, VIP+) aufbauen, in denen das Technologiekonzept beschrieben und die prinzipielle Machbarkeit überprüft wurde (Proof-of-Principle beziehungsweise initiales Proof-of-Concept).
Zur Untersuchung der Zielerreichung dieser Maßnahme können unter anderem folgende Indikatoren herangezogen werden:
1.3 Rechtsgrundlagen
Der Bund gewährt die Zuwendungen nach Maßgabe dieser Förderrichtlinie, der §§ 23 und 44 der Bundeshaushaltsordnung (BHO) und den dazu erlassenen Verwaltungsvorschriften sowie der „Richtlinien für Zuwendungsanträge auf Ausgabenbasis (AZA/AZAP/AZV)“ und/oder der „Richtlinien für Zuwendungsanträge auf Kostenbasis von Unternehmen der gewerblichen Wirtschaft (AZK)“ des BMBF. Ein Anspruch auf Gewährung der Zuwendung besteht nicht. Vielmehr entscheidet die Bewilligungsbehörde aufgrund ihres pflichtgemäßen Ermessens im Rahmen der verfügbaren Haushaltsmittel.
Nach dieser Förderrichtlinie werden staatliche Beihilfen auf der Grundlage von Artikel 25 Absatz 1 und 2 Buchstabe a, b, c und d sowie Artikel 28 Absatz 1 der Allgemeinen Gruppenfreistellungsverordnung (AGVO) der EU-Kommission gewährt. Die Förderung erfolgt unter Beachtung der in Kapitel I AGVO festgelegten Gemeinsamen Bestimmungen, insbesondere unter Berücksichtigung der in Artikel 2 der Verordnung aufgeführten Begriffsbestimmungen (vergleiche hierzu die Anlage zu beihilferechtlichen Vorgaben für die Förderrichtlinie).
2 Gegenstand der Förderung
Gefördert werden Gründungsteams aus der Wissenschaft, die innovative FuE-Ansätze im Bereich der Lebenswissenschaften mit hohem Kommerzialisierungspotenzial vorantreiben und bis zu einem Reifegrad entwickeln, der eine erfolgreiche Ausgründung ermöglicht. Die Vorhaben sollen einen hohen Bedarf in den Lebenswissenschaften adressieren und sich dadurch auszeichnen, dass sie aufgrund der oben beschriebenen Verwertungsrisiken nicht ohne öffentliche Förderung umgesetzt werden können.
Für Projekte mit Kommerzialisierungs- und Gründungspotenzial unter anderem auch in den Lebenswissenschaften ist die Förderrichtlinie EXIST Forschungstransfer des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) ein etabliertes Förderinstrument. Im Gegensatz zu EXIST Forschungstransfer richtet sich GO-Bio next an Forschungsprojekte, bei denen bei Antragstellung lange Entwicklungszeiträume, ein hoher Finanzbedarf (auch nach der Firmengründung) und ein hohes Entwicklungsrisiko absehbar sind. Die Förderinteressierten sollen zur Klärung der Passfähigkeit die auf den Internetseiten der jeweiligen Fördermaßnahmen bereitgestellten Abgrenzungskriterien prüfen und die von den zuständigen Projektträgern angebotene Förderberatung in Anspruch nehmen.
Vorhaben, die im Schwerpunkt der Agrar-, Lebensmittel- und Ernährungsforschung zuzuordnen sind, sind von dieser Richtlinie ausgenommen.
Das BMBF unterstützt im Sinne der Start-up-Strategie der Bundesregierung ausdrücklich vielfältig aufgestellte Gründungsteams.
Die Förderung erfolgt in zwei Phasen:
In der ersten Förderphase sollen der Proof-of-Concept für den Forschungsansatz erarbeitet beziehungsweise weiterentwickelt und konkrete Strategien für die Kommerzialisierung in Form einer Ausgründung entwickelt werden. Dies betrifft das Fortschreiben des Businessplans und die Erbringung des Eigenanteils für die zweite Förderphase. Gefördert werden ausschließlich Einzelvorhaben von Hochschulen und Forschungseinrichtungen.
In der zweiten Förderphase soll die Basis für die nachhaltige Entwicklung des ausgegründeten Unternehmens gelegt werden, indem der Reifegrad des Forschungsansatzes weiter erhöht, Strategien für die Markteinführung ausgearbeitet und das Geschäftsmodell weiter konkretisiert werden. Ziel ist es, weiteres Unternehmenswachstum und hierfür notwendige Folgefinanzierungen sicherzustellen. Dabei steht die markt- und bedarfsgetriebene Entwicklung im Vordergrund, um den kommerziellen Erfolg zu sichern. Gefördert werden ausschließlich Einzelvorhaben des Gründungsunternehmens. Bei Projekten zur Entwicklung innovativer Wirkstoffe ist eine Förderung bis in die klinische Phase IIa möglich.
Von den im Rahmen dieser Bekanntmachung geförderten Projekten wird die Bereitschaft erwartet, an Veranstaltungen des BMBF teilzunehmen.
3 Zuwendungsempfänger
Antragsberechtigt für die erste Förderphase sind Hochschulen und Forschungseinrichtungen, an denen die Gründungsteams angesiedelt sind. Antragsberechtigt für die zweite Förderphase sind kleine technologieorientierte Kapitalgesellschaften, die die Voraussetzungen der KMU-Definition der Europäischen Union erfüllen. In der Regel sollten diese als Ergebnis der ersten Förderphase gegründet worden sein, wobei die wesentlichen Know-how-Trägerinnen und -Träger der zugrunde liegenden Technologie ihr Wissen und ihre Arbeitskraft in das neue Unternehmen einbringen. Ein Quereinstieg in die zweite Förderphase ist möglich, wenn die Gründung des Unternehmens vor nicht länger als drei Jahren aus einer Hochschule oder Forschungseinrichtung heraus erfolgte, die Nutzungsrechte für die wirtschaftliche Verwertung des FuE-Ansatzes vorliegen und die geforderte Eigenbeteiligung (siehe Nummer 5) für die geplanten Forschungsarbeiten aufgebracht werden kann.
Zum Zeitpunkt der Auszahlung einer gewährten Zuwendung wird das Vorhandensein einer Betriebsstätte oder Niederlassung (Unternehmen) beziehungsweise einer sonstigen Einrichtung, die der nichtwirtschaftlichen Tätigkeit des Zuwendungsempfängers dient (Hochschule, Forschungseinrichtung), in Deutschland verlangt.
Forschungseinrichtungen, die von Bund und/oder Ländern grundfinanziert werden, können neben ihrer institutionellen Förderung nur unter bestimmten Voraussetzungen eine Projektförderung für ihre zusätzlichen projektbedingten Ausgaben beziehungsweise Kosten bewilligt bekommen.
Zu den Bedingungen, wann staatliche Beihilfe vorliegt/nicht vorliegt und in welchem Umfang beihilfefrei gefördert werden kann, siehe FuEuI-Unionsrahmen.
Der Antragsteller erklärt gegenüber der Bewilligungsbehörde seine Einstufung gemäß KMU-Empfehlung der Kommission im Rahmen des Antrags.
4 Besondere Zuwendungsvoraussetzungen
Alle Zuwendungsempfänger, auch Forschungseinrichtungen im Sinne von Artikel 2 (Nummer 83) AGVO, stellen sicher, dass keine indirekten (mittelbaren) Beihilfen an Unternehmen fließen. Dazu sind die Bestimmungen von Nummer 2.2 des FuEuI-Unionsrahmens zu beachten.
Voraussetzung für eine Förderung in der ersten Förderphase ist, dass die jeweilige Hochschule oder Forschungseinrichtung dem Gründungsteam die zur Durchführung des Projekts erforderliche Infrastruktur zur Verfügung stellt (Laborgrundausstattung und sonstige Infrastruktur). Das Gründungsteam ist zum Erreichen der mit der Förderung beabsichtigten Verwertung der Projektergebnisse in allen Belangen zu unterstützen. Dieses umfasst insbesondere auch die Bereitschaft und Absicht, einen Zugriff auf bereits bestehende und in der ersten Förderphase neu entstehende Schutzrechte im Fall einer Unternehmensgründung zu marktüblichen Konditionen zu gewähren, die einer nachhaltigen kommerziellen Entwicklung des zu gründenden Unternehmens förderlich sind. Weiter wird die Bereitschaft zu einer Kooperationsvereinbarung mit der Ausgründung zu marktüblichen Konditionen erwartet. Eine entsprechende Erklärung der Hochschule/Forschungseinrichtung ist dem gemäß Nummer 7.2 vorzulegenden Projektantrag beizufügen. Im Regelfall sollte im ersten Jahr der ersten Förderphase ein Eckpunkte-Papier zwischen Gründungsteam und der Hochschule/Forschungseinrichtung abgestimmt werden, in dem die grundlegenden Nutzungskonditionen für die Schutzrechte sowie gegebenenfalls die Konditionen für eine Beteiligung der Hochschule oder Forschungsreinrichtung an der Ausgründung und für die Kooperation mit dieser definiert sind. Aufbauend darauf sollten spätestens sechs Monate vor Ende der ersten Förderphase detaillierte Verträge ausgehandelt sein. Eckpunkte-Papier und Verträge sind dem Zuwendungsgeber im Entwurfsstadium sowie nach Unterzeichnung vorzulegen. Der „Leitfaden für die Gestaltung des Prozesses zum IP-Vertrag mit Ausgründungen“ (TransferAllianz) kann hierfür Grundlage sein; die Nutzung der in der „IP Toolbox“ enthaltenen oder vergleichbarer Musterverträge (vom Projektträger erhältlich) wird erwartet.
Ergibt sich während der ersten Förderphase die Möglichkeit einer frühzeitigen Ausgründung oder eine anderweitige Möglichkeit der Verwertung der Projektergebnisse, so ist der Zuwendungsgeber umgehend über das geplante Fortführungskonzept zu informieren. Seitens des Zuwendungsempfängers sind diese Verwertungsaktivitäten zu unterstützen und die Voraussetzungen für einen die Projektkontinuität wahrenden Übergang zu gewährleisten.
5 Art und Umfang, Höhe der Zuwendung
Die Zuwendungen werden im Wege der Projektförderung als nicht rückzahlbarer Zuschuss auf der Basis einer Meilensteinplanung (siehe Nummer 5.1 und 5.2) gewährt. Ein Nicht-Erreichen von Meilensteinen kann zum Abbruch der Förderung führen. Die Höhe der Zuwendung pro Vorhaben richtet sich im Rahmen der verfügbaren Haushaltsmittel nach den Erfordernissen des beantragten Vorhabens.
Bemessungsgrundlage für Zuwendungen an Unternehmen der gewerblichen Wirtschaft und für Vorhaben von Forschungseinrichtungen, die in den Bereich der wirtschaftlichen Tätigkeiten fallen, sind die zuwendungsfähigen projektbezogenen Kosten. Diese können unter Berücksichtigung der beihilferechtlichen Vorgaben (siehe Anlage) anteilig finanziert werden. Nach BMBF-Grundsätzen wird eine angemessene Eigenbeteiligung an den entstehenden zuwendungsfähigen Kosten vorausgesetzt.
Bemessungsgrundlage für Zuwendungen an Hochschulen, Forschungs- und Wissenschaftseinrichtungen und vergleichbare Institutionen, die nicht in den Bereich der wirtschaftlichen Tätigkeiten fallen, sind die zuwendungsfähigen projektbezogenen Ausgaben (bei Helmholtz-Zentren und der Fraunhofer-Gesellschaft die zuwendungsfähigen projektbezogenen Kosten), die unter Berücksichtigung der beihilferechtlichen Vorgaben individuell bis zu 100 Prozent gefördert werden können.
Bei nichtwirtschaftlichen Forschungsvorhaben an Hochschulen und Universitätskliniken wird zusätzlich zu den durch das BMBF finanzierten zuwendungsfähigen Ausgaben eine Projektpauschale in Höhe von 20 Prozent gewährt.
Förderfähig sind Ausgaben/Kosten, welche im Förderzeitraum dazu dienen, den geplanten Forschungsprozess beziehungsweise die Ergebnisse der Öffentlichkeit zugänglich zu machen und über diese mit der Gesellschaft in den Austausch zu gehen. Die Wissenschaftskommunikation ist die allgemeinverständliche, dialogorientierte Kommunikation und Vermittlung von Forschung und wissenschaftlichen Inhalten an Zielgruppen außerhalb der Wissenschaft.
Die zuwendungsfähigen Ausgaben/Kosten richten sich nach den „Richtlinien für Zuwendungsanträge auf Ausgabenbasis (AZA/AZAP/AZV)“ und/oder den „Richtlinien für Zuwendungsanträge auf Kostenbasis von Unternehmen der gewerblichen Wirtschaft (AZK)“ des BMBF.
Für die Festlegung der jeweiligen zuwendungsfähigen Kosten und die Bemessung der jeweiligen Förderquote sind die Vorgaben der AGVO zu berücksichtigen (siehe Anlage).
CO2-Kompensationszahlungen für Dienstreisen können nach Maßgabe der „Richtlinien für Zuwendungsanträge auf Ausgabenbasis (AZA/AZAP/AZAV)“ beziehungsweise der „Richtlinien für Zuwendungsanträge auf Kostenbasis von Unternehmen der gewerblichen Wirtschaft (AZK)“ als zuwendungsfähige Ausgaben beziehungsweise Kosten anerkannt werden.
5.1 Erste Förderphase
Die Förderung wird auf der Grundlage einer im Projektantrag enthaltenen Meilensteinplanung für einen Zeitraum von in der Regel bis zu drei Jahren an eine Hochschule oder Forschungseinrichtung gewährt. Basierend auf einer erfolgreichen Zwischenevaluation nach zwei Dritteln der beantragten Projektlaufzeit, bei der insbesondere die Fortschritte bei der Vorbereitung der Ausgründung bewertet werden, wird über die Fortführung oder den Abbruch der Förderung entschieden.
Während der ersten Förderphase sollte das Gründungsteam seine Kompetenzen hinsichtlich des beruflichen Hintergrundes so vervollständigen, dass neben der wissenschaftlichen Expertise auch das für eine spätere Unternehmensgründung oder die Überführung in einen anderen privatwirtschaftlichen Kontext notwendige Wissen in kaufmännischen, juristischen und sonstigen Belangen vorhanden ist. Explizit werden betriebswirtschaftliche Kenntnisse, Erfahrungen im Projektmanagement sowie unternehmerisches Denken erwartet. Zudem sind Kenntnisse zur Produktentwicklung nach industriellen Standards (zum Beispiel im Hinblick auf regulatorische Fragestellungen) notwendig. Zur Stärkung und Weiterentwicklung dieser Expertisen können auch entsprechende externe Beratungskapazitäten in das Projekt eingebunden werden. Sofern die Expertisen nicht durch Teammitglieder abgedeckt werden, ist dies obligatorisch. Eine Teilnahme an den Fortbildungsveranstaltungen, die vom BMBF regelmäßig durchgeführt werden, wird von allen Projektleitenden erwartet.
Zuwendungsfähig sind folgende projektbezogene Ausgaben beziehungsweise Kosten für:
5.2 Zweite Förderphase
Nach Abschluss der ersten Förderphase und erfolgreicher Evaluation durch eine Jury (siehe Nummer 7.2.2) kann das ausgegründete Unternehmen in einer sich anschließenden zweiten Phase für in der Regel bis zu drei Jahre auf Basis einer Meilensteinplanung gefördert werden. Basierend auf einer erfolgreichen Zwischenevaluation nach der Hälfte der Laufzeit, bei der insbesondere die Fortschritte hinsichtlich der nachhaltigen Entwicklung des ausgegründeten Unternehmens bewertet werden, wird über die Fortführung oder den Abbruch der Förderung entschieden. Ein Quereinstieg in die zweite Förderphase ist unter den in Nummer 3 genannten Voraussetzungen möglich.
In der zweiten Förderphase wird entsprechend den beihilferechtlichen Vorgaben (siehe Anlage) eine Eigenbeteiligung des ausgegründeten Unternehmens erwartet.
Für die zweite Förderphase gelten die in Nummer 5.1 genannten grundsätzlich zuwendungsfähigen Positionen. Zudem sind die Kosten der direkt oder in Lizenz erworbenen Patente entsprechend Artikel 25 AGVO förderfähig.
Die Projekte stehen bei der Auswahl für eine zweite Förderphase untereinander im Wettbewerb. Nur Gründungsvorhaben mit einem tragfähigen Unternehmenskonzept können gefördert werden.
7 Verfahren
7.1 Einschaltung eines Projektträgers, Antragsunterlagen, sonstige Unterlagen und Nutzung des elektronischen Antragssystems
Mit der Abwicklung der Fördermaßnahme hat das BMBF derzeit folgenden Projektträger beauftragt:
VDI/VDE Innovation + Technik GmbH (VDI/VDE-IT)
Steinplatz 1
10623 Berlin
Ansprechpersonen sind:
Dr. Dirk Kautz
Dr. Nicole Häusler
Telefon: 030/31 00 78-5515
E-Mail: go-bio-next(at)vdivde-it.de
Internet: https://www.go-bio.de/
Soweit sich hierzu Änderungen ergeben, wird dies im Bundesanzeiger oder in anderer geeigneter Weise bekannt gegeben.
Vordrucke für Förderanträge, Richtlinien, Merkblätter, Hinweise und Nebenbestimmungen können unter der Internetadresse https://foerderportal.bund.de/ abgerufen oder unmittelbar beim oben angegebenen Projektträger angefordert werden.
Zur Erstellung von Projektskizzen und förmlichen Förderanträgen ist das elektronische Antragssystem „easy-Online“ zu nutzen (https://foerderportal.bund.de/easyonline). Es besteht die Möglichkeit, den Antrag in elektronischer Form über dieses Portal unter Nutzung des TAN-Verfahrens oder mit einer qualifizierten elektronischen Signatur einzureichen. Daneben bleibt weiterhin eine Antragstellung in Papierform möglich.
Es wird empfohlen, zur Beratung mit dem Projektträger Kontakt aufzunehmen. Weitere Informationen und Erläuterungen sind dort erhältlich. Im Zuge dieser Förderrichtlinie bietet der Projektträger Informationsveranstaltungen an. Weitere Informationen und die Anmeldung sind unter vdivde-it.de/de/veranstaltung/infoveranstaltung-bekanntmachung-go-bio-next verfügbar. In die Erstellung von Projektskizzen und Anträgen für die erste Förderphase soll nach Möglichkeit eine Transferstelle beziehungsweise Gründungsberatung eingebunden werden.
7.2 Zweistufiges Antragsverfahren
Das Antragsverfahren ist zweistufig angelegt.
7.2.1 Vorlage und Auswahl von Projektskizzen (erste Förderphase und Direkteinstieg zweite Förderphase)
In der ersten Verfahrensstufe können beim beauftragten Projektträger des BMBF jederzeit zu den Stichtagen 15. März und 15. September zunächst Projektskizzen in elektronischer Form und in deutscher oder englischer Sprache über das elektronische Antragssystem „easy-Online“ eingereicht werden (für Phase 1: https://foerderportal.bund.de/easyonline/reflink.jsf?m=GO-BIO&b=GO-BIO-NEXT-SKIZZE&t=SKI, für Phase 2: https://foerderportal.bund.de/easyonline/reflink.jsf?m=GO-BIO&b=GO-BIO-NEXT-2FP-SKI&t=SKI).
Eine zusätzliche postalische Einreichung der Projektskizzen ist nicht gewünscht, da die Einreichung rein elektronisch zu erfolgen hat.
Projektskizzen, die nach einem Stichtag eingehen, können möglicherweise erst zum nächstfolgenden Stichtag berücksichtigt werden.
Projektskizzen müssen einen konkreten Bezug zu den Kriterien dieser Bekanntmachung aufweisen und alle wesentlichen Aussagen zur Beurteilung und Bewertung enthalten. Sie sollen einen Umfang von zehn DIN-A4-Seiten zuzüglich Deckblatt und Anlagen nicht überschreiten (Schriftart Arial, Schriftgröße mindestens 10 Punkt, 1,5-facher Zeilenabstand, Rand mindestens 2 cm). Skizzen, die diese Vorgaben nicht erfüllen, können von der Bewertung ausgeschlossen werden und ohne weitere Begründung abgelehnt werden. Wiedervorlagen sind möglich; geänderte Abschnitte sind dabei kenntlich zu machen.
Die Projektskizze sollte die folgenden Abschnitte enthalten:
Die unter https://vdivde-it.de/de/formulare-fuer-foerderprojekte zur Verfügung gestellte Skizzenvorlage soll genutzt werden.
Aus der Vorlage einer Projektskizze kann kein Anspruch auf eine Förderung abgeleitet werden.
Die eingegangenen Projektskizzen werden nach den folgenden Kriterien bewertet:
Entsprechend den oben angegebenen Kriterien und ihrer Bewertung werden die für eine Förderung geeigneten Projektideen ausgewählt. Die eingereichten Projektvorschläge stehen untereinander im Wettbewerb. Das Auswahlergebnis wird den Interessenten schriftlich mitgeteilt.
In der zweiten Verfahrensstufe werden die Verfasser der positiv bewerteten Projektskizzen unter Angabe detaillierter Informationen, der formalen Kriterien und eines Termins aufgefordert, einen förmlichen Förderantrag vorzulegen. Die nachfolgenden Informationen gelten für Anträge auf die erste Förderphase, Informationen für Anträge auf einen Direkteinstieg in die zweite Förderphase nach positiver Skizzenbegutachtung finden sich in Nummer 7.2.2.
Ein vollständiger Förderantrag liegt nur vor, wenn mindestens die Anforderungen nach Artikel 6 Absatz 2 AGVO (vergleiche Anlage) erfüllt sind.
Zur Erstellung der förmlichen Förderanträge ist die Nutzung des elektronischen Antragssystems „easy-Online“ (unter Beachtung der in der Anlage genannten Anforderungen) erforderlich (https://foerderportal.bund.de/easyonline/). Die Zugangsdaten werden vom zuständigen Projektträger zur Verfügung gestellt. Es besteht die Möglichkeit, den Antrag in elektronischer Form über dieses Portal unter Nutzung des TAN-Verfahrens oder mit einer qualifizierten elektronischen Signatur einzureichen. Daneben bleibt weiterhin eine Antragstellung in Papierform möglich.
Den förmlichen Förderanträgen sind eine Vorhabenbeschreibung und ein Businessplan/Read Deck (siehe Mustervorlagen, abrufbar unter https://vdivde-it.de/de/formulare-fuer-foerderprojekte#programmebmbf) beizulegen, die in deutscher oder englischer Sprache verfasst sein können. Vorhabenbeschreibung und Businessplan/Read Deck sind entsprechend den zur Verfügung gestellten Mustervorlagen zu gliedern und sollten folgende Inhalte abdecken:
Anträge, deren Vorhabenbeschreibung und Businessplan/Read Deck die Vorgaben der Vorlagen nicht erfüllen, können von der Bewertung ausgeschlossen und ohne weitere Begründung abgelehnt werden.
Als weitere Anlage ist beizufügen:
Erklärung der Hochschule/Forschungseinrichtung zur Aufnahme und Unterstützung des Projektteams
Die eingegangenen Anträge werden nach den folgenden Kriterien von einer Jury bewertet und geprüft:
Entsprechend den oben angegebenen Kriterien und ihrer Bewertung werden Projektteams unter Angabe detaillierter Informationen und eines Termins für eine Projektpräsentation vor der Jury ausgewählt. Nach Vortrag und abschließender Antragsprüfung wird über eine Förderung entschieden.
Aus der Vorlage eines förmlichen Förderantrags kann kein Anspruch auf eine Förderung abgeleitet werden.
In der ersten Förderphase erfolgt nach zwei Jahren eine Evaluation des Projektfortschritts, nach der über eine Fortsetzung der Förderung entschieden wird.
Für die Beantragung der zweiten Förderphase durch das Gründungsunternehmen ist ein Vertrag mit der Hochschule beziehungsweise Forschungseinrichtung über die Nutzung der erforderlichen Schutzrechte zu marktüblichen Konditionen, die einer nachhaltigen kommerziellen Entwicklung des zu gründenden Unternehmens förderlich sind, erforderlich. Falls ein solcher Vertrag nicht in einem angemessenen Zeitraum vor Abschluss der ersten Förderphase zustande kommt, behält sich das BMBF Gespräche mit den Beteiligten vor, um zu einem Vertragsabschluss zu gelangen.
7.2.2 Vorlage förmlicher Förderanträge und Entscheidungsverfahren (zweite Förderphase)
Im Fall eines direkten Einstiegs eines Gründungsteams in die zweite Förderphase werden die Verfasser der positiv bewerteten Projektskizzen unter Angabe detaillierter Informationen, der formalen Kriterien und eines Termins aufgefordert, einen förmlichen Förderantrag vorzulegen.
Gründungsteams, die aus einer Förderung der ersten Förderphase hervorgehen, reichen Anträge in einem einstufigen Verfahren ohne vorherige Skizzenvorlage ein. Dieses einstufige Verfahren steht auch Gründungsteams nach einer erfolgreichen Förderung im Rahmen der Förderlinie EXIST Forschungstransfer des BMWK offen. Die Frist zur Vorlage der Anträge richtet sich nach dem Verlauf der ersten Förderphase und wird rechtzeitig bekannt gegeben.
Ein vollständiger Förderantrag liegt nur vor, wenn mindestens die Anforderungen nach Artikel 6 Absatz 2 AGVO (vergleiche Anlage) erfüllt sind.
Zur Erstellung der förmlichen Förderanträge ist die Nutzung des elektronischen Antragssystems „easy-Online“ (unter Beachtung der in der Anlage genannten Anforderungen) erforderlich (https://foerderportal.bund.de/easyonline/). Die Zugangsdaten werden vom zuständigen Projektträger zur Verfügung gestellt. Es besteht die Möglichkeit, den Antrag in elektronischer Form über dieses Portal unter Nutzung des TAN-Verfahrens oder mit einer qualifizierten elektronischen Signatur einzureichen. Daneben bleibt weiterhin eine Antragstellung in Papierform möglich.
Den förmlichen Förderanträgen ist eine Vorhabenbeschreibung und ein Businessplan/Read Deck (siehe Mustervorlagen, abrufbar unter https://vdivde-it.de/de/formulare-fuer-foerderprojekte#programmebmbf) beizulegen, die in deutscher oder englischer Sprache verfasst sein können. Vorhabenbeschreibung und Businessplan/Read Deck sind entsprechend den zur Verfügung gestellten Mustervorlagen zu gliedern und sollten folgende Inhalte abdecken:
Anträge, deren Vorhabenbeschreibung und Businessplan/Read Deck die Vorgaben der Vorlagen nicht erfüllen, können von der Bewertung ausgeschlossen und ohne weitere Begründung abgelehnt werden.
Die eingegangenen Anträge werden nach den folgenden Kriterien und nach einer persönlichen Projektpräsentation von einer Jury bewertet und geprüft:
Entsprechend den oben angegebenen Kriterien und ihrer Bewertung und abschließender Antragsprüfung wird über eine Förderung entschieden.
Aus der Vorlage eines förmlichen Förderantrags kann kein Anspruch auf eine Förderung abgeleitet werden.
Die vollständige Richtlinie finden Sie hier.
]]>►Weitere Informationen rund um die Veranstaltung gibt es hier.
Die Anmeldung ist bis spätestens 3. Juni 2024 möglich.
]]>Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
]]>
Philipp-Immanuel Dietrich (Keystone Photonics GmbH) stellte neue optische Charakterisierungsmethoden für industrielle und wissenschaftliche Anwendungen vor, u.a. für die Qualitätskontrolle optischer und elektronischer Chips. Nicolai Walter (Pixel Photonics GmbH) widmete sich anschließend integrierten Detektoren für einzelne Photonen mit sehr hoher Quanteneffizienz. Um die Konnektivität verschiedener photonischer Chips mit elektronischer Ansteuerung zu vereinfachen, stellte Dr. Niklaus Flöry die PCB-Lösungen der vario-optics AG vor.
Für die Nutzung dieser zahlreichen technischen Möglichkeiten für Quanten-Sensoren und -Computerchips ist eine dedizierte Strategie notwendig. Dr. Lykourgos Bougas (Quantum Brilliance GmbH) präsentierte hierzu explizite Anforderungen an die photonische Integration.
Im Anschluss an die Fachvorträge fanden drei virtuelle Sessions zu den Themen „Möglichkeiten integrierter Sensorik”, „Sensor-Spezifikation” sowie „Fertigung im Detail” statt, um Fragen der Teilnehmenden direkt mit den Experten zu diskutieren und neue Kontakte zu knüpfen.
Wir bedanken uns ganz herzlich bei allen Referenten und Teilnehmenden für den spannenden Austausch!
Das nächste Treffen findet voraussichtlich als Präsenzveranstaltung im Herbst / Winter 2024 statt.
]]>
Im Rahmen der zweiten Lunch Session ging es am 09. April 2024 um die Frage, was Spezialisten von einer Stellenanzeige erwarten, und vor allem wo diese platziert sein sollte, um die entsprechende Resonanz zu erhalten.
Ob Sichtbarkeit in unterschiedlichen und vor allem welchen Medien, sowie den passenden Stil je nach Wunschkandidat, es gibt einiges zu beachten, um in der heutigen Zeit als Arbeitgeber am Arbeitsmarkt aufzufallen.
Im vorläufig letzten Teil der Reihe am 17. April 2024 wurde unter anderem deutlich, wie wichtig es ist die Möglichkeit einer schnellen und unkomplizierten Bewerbung zu bieten, und wie Schnell-Bewerber-Buttons die Mitarbeitersuche auch auf Social Media Plattformen unterstützen können.
Alles in allem sind es viele kleine Stellschrauben im Ausschreibungs- und anschließenden Bewerbungsprozess, die maßgeblich Einfluss haben auf die Bewerbersuche und das Finden und gefunden Werden passender Kandidaten und am Ende hoffentlich neuer Mitarbeiter. Denn was könnte am Ende wirkungsvoller sein als die direkte Weiterempfehlung zufriedener Mitarbeiter.
Q.ANT nimmt eine führende Rolle auf dem Feld der Magnetfeldsensorik auf Basis von Quantentechnologie ein. „Der Sensor von Q.ANT ermöglicht die feinen Sensitivitäten, die wir für das Auslesen von Biosignalen benötigen”, sagt Urs Schneider, Leiter der Biomechatronik-Forschung am Fraunhofer IPA.
Das Kompetenzzentrum hat seinen Sitz in Stuttgart und bringt rund 15 Experten aus Forschung und Industrie zusammen.
“Wir wollen Handprothesen, wie gesunde Gliedmaßen, durch neuronale Impulse steuern. Das Fraunhofer IPA bringt ausgewiesene Expertise auf diesem Feld der Biomechatronik in unsere strategische Partnerschaft mit ein. Hieraus lassen sich komplett neuartige Anwendungen in der Medizintechnik denken. Wir gehören damit zu den Pionieren auf diesem vielversprechenden Anwendungsfeld für Quantensensorik und definieren die Mensch-Maschine-Schnittstelle neu”, sagt Michael Förtsch, CEO von Q.ANT, das sich auf photonische Quantentechnologien für Sensorik und Computing spezialisiert hat.
Beide Kooperationspartner bringen langjährige Erfahrung in die Kooperation ein: Q.ANT entwickelt seit fünf Jahren einen auf Quantentechnologie basierenden Magnetfeldsensor. Er zeichnet sich insbesondere durch seine Kombination aus Sensitivität, Größe und einen Betrieb bei Raumtemperatur aus. Das Fraunhofer IPA kann auf mehr als 15 Jahre Expertise in Biomechatronik und Biosignal-Prozessierung bauen. So werden die Spezialistinnen und Spezialisten vom IPA Biosignale charakterisieren, um dann entsprechende Algorithmen zu programmieren, die die Sensordaten in Steuerungsbefehle für die Prothese umwandeln. Am Fraunhofer-Institut werden auch die entsprechenden Versuchsreihen mit Patientinnen und Patienten durchgeführt, deren Ergebnisse in die Entwicklung der Prothesen-Prototypen einfließen.
Über Q.ANT
Q.ANT ist ein Hightech-Start-Up, das photonische Quantentechnologien vorantreibt und industrialisiert, und dadurch die Grenzen zu neuen Anwendungsfeldern und Prozessen verschiebt. Das Unternehmen arbeitet an Technologien zur Datengenerierung und Datenverarbeitung. Dafür entwickelt Q.ANT Quantensensoren und Photonische Prozessoren. Mit den vier Produktlinien Photonic Computing, Particle Metrology, Atomic Gyroscopes und Magnetic Sensing ist Q.ANT ein Partner für unterschiedlichste Branchen und Anwendungsfelder, die von Medizintechnik über Autonomes Fahren bis hin zu Luft- und Raumfahrt, Maschinenbau und Prozesstechnik reichen. Q.ANT beschäftigt rund 100 Mitarbeiterinnen und Mitarbeiter am Standort Stuttgart.
Über Fraunhofer IPA
Das Fraunhofer-Institut für Produktionstechnik und Automatisierung, kurz Fraunhofer IPA, ist mit annähernd 1200 Mitarbeiterinnen und Mitarbeitern eines der größten Institute der Fraunhofer-Gesellschaft. Organisatorische und technologische Aufgaben aus der Produktion sind Forschungsschwerpunkte des Instituts. Methoden, Komponenten und Geräte bis hin zu kompletten Maschinen und Anlagen werden entwickelt, erprobt und umgesetzt. 19 Fachabteilungen arbeiten interdisziplinär, koordiniert durch 6 Geschäftsfelder, vor allem mit den Branchen Automotive, Maschinen- und Anlagenbau, Elektronik und Mikrosystemtechnik, Energie, Medizin- und Biotechnik sowie Prozessindustrie zusammen. An der wirtschaftlichen Produktion nachhaltiger und personalisierter Produkte orientiert das Fraunhofer IPA seine Forschung.
Pressekontakt:
Q.ANT GmbH
Joerg Kochendoerfer
Fellow Marketing Manager
+49 160 5619730
joerg.kochendoerfer@qant.gmbh
www.qant.com
Reichen Sie Ihr Abstract bis spätestens zum 28. Juni 2024 ein. Alle Informationen finden Sie unter diesem Link.
Die Bewertungskriterien
Die Vorgaben
Weitere Informationen finden Sie unter https://www.applied-photonics-award.de/
]]>Kontakt:
Instrument Systems GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com
]]>
Kategorien
Der Quantum Effects Award 2024 wird in 4 Kategorien vergeben:
Ihr Nutzen
Reichen Sie Ihre innovative quantentechnologische Entwicklung bzw. Lösung bis zum 30. Juni 2024 beim Quantum Effects Award 2024 ein. Die Anmeldung erfolgt online unter quantum-effects.com/award. Dort finden Sie auch alle weiteren wichtigen Informationen und Teilnahmebedingungen.
Der Quantum Effects Award 2024 wird am 8. Oktober 2024 verliehen.
Alle Informationen finden Sie hier.
Übrigens: Auch in diesem Jahr findet wieder eine gemeinschaftliche Ausstellung des Landes Baden-Württemberg statt. Nähere Informationen zu den Ausstellerkonditionen folgen in Kürze.
]]>Zum Start der Begleitkonferenz en-tech.talks gaben sich die Big Player der Region auf der Bühne das Mikro in die Hand: Carl Zeiss, Leica Camera, Bosch Thermotechnik/ Buderus Deutschland und die Justus-Liebig-Universität Gießen zeigten eindrucksvoll, warum Hessen in vielen Technologiebereichen die Nase vorn hat. Voll wurde es am ersten Tag auch beim Top-Thema „Hessen in Space“ mit den prominenten Referenten, dem ehemaligen ESA-Raumfahrer Dr. Thomas Reiter und Prof. Dr. Wörner, Raumfahrtkoordinator der Hessischen Landesregierung. Moderiert von Heraeus Quarzglas präsentierten die RWTH Aachen und die beiden deutschen Pioniere der Fusionsenergie, Focused Energy aus Darmstadt und Marvel Fusion aus München, im Anschluss ihre Visionen zur CO2-freien Energiequelle. Prof. Dr. Guckert von der Technischen Hochschule Mittelhessen warf mit seiner Keynote „Die KI als CEO“ einen weiten Blick in die Zukunft und wagte eine Prognose, ob Führungsaufgaben künftig auch von der Künstlichen Intelligenz übernommen werden könnten.
Stark vertreten waren zum 10. Jubiläum auch die vielen Kompetenzpartner der W3+Fair, darunter die langjährigen Goldpartner Wetzlar Network und EPIC, das weltgrößte Photoniknetzwerk, sowie OptecNet Deutschland, Spectaris, IVAM, AMA und viele mehr. Unterstützt wird die Messe von Beginn an von Hessen Trade & Invest.
Bereits am Vortag hatte das „Kompetenzzentrum Ultrapräzise Oberflächenbearbeitung“ UPOB von der PTB in Braunschweig zum 12. Workshop für Asphären Messtechnik geladen. Am ersten Messetag bot die IHK Lahn-Dill mit ihrer KI-Tagung Best-Practice Wissen „zum Mitnehmen“. Mit dem EPIC C-Level Breakfast und dem EPIC TechWatch begann Tag zwei der W3+ Fair. Viel Resonanz bekam auch die Einladung vom Regionalmanagement Mittelhessen und TeamMit, dem noch neuen Netzwerk, das die mittelhessische Automobilzulieferindustrie bei ihrem Transformationsprozess begleiten möchte. Beim Messerundgang wurde die Überschneidungen mit der W3+ Fair schnell sichtbar.
Projekt Direktor Jörg Brück ist mehr als zufrieden: „Wir haben ein wahres Feuerwerk zum Jubiläum gezündet. Die W3+ Fair steht für unkomplizierte Kontaktpflege, Netzwerkausbau, neue Ideen und Impulse an starken Hightech-Standorten. Das macht die Messe für Besucher zu einer einfachen Wissen- und Kontaktquelle und für viele Unternehmen unersetzlich.“
Die nächste W3+ Fair in Wetzlar findet am 26. + 27. März 2025 statt. In Jena öffnet die W3+ Fair noch in diesem Jahr am 25. + 26. September 2024 ihre Türen.
Pressekontakt:
Tanja Knott
Business Director Technology Events
P: +49 40 66 906 919
E : tanja.knott(at)fleet-events.de
Nach der Mittagspause mit Networking-Möglichkeiten stellte Professor Alwin Kienle, Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm (ILM), die Generierung und Darstellung von optischen Zwillingen für medizintechnische Anwendungen vor. Professor Alexander Rohrbach, Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg, veranschaulichte die Streuung von Laserlicht an Zellen und Zellclustern in der biomedizinischen Optik. Die Möglichkeiten der automatisierten quantitativen digitalholographischen Phasenkontrastmikroskopie zur Zell- und Gewebeanalyse wurden anschließend von Dr. Björn Kemper, Biomedizinisches Technologiezentrum (BMTZ) / Universität Münster, vorgestellt.
Dr. Augusto Arias, ZEISS Vision Science Lab / Universität Tübingen, widmete sich in seinem Fachvortrag der räumlichen Lichtmodulation zur Beurteilung von Myopie-Kontrollgläsern. Den Abschluss des Optik-Kolloquiums bildete der Vortrag über ein endoskopisches Messsystem zur elastografischen Gewebedifferenzierung basierend auf aktiver Triangulation und 3D-gedruckter Mikrooptik von Dr. Valese Aslani, ITO der Universität Stuttgart.
Wir bedanken uns herzlich beim ITO für die Organisation des Kolloquiums und bei den Referentinnen und Referenten für die spannenden Einblicke!
]]>Über 50 Teilnehmerinnen und Teilnehmer diskutierten die Ergebnisse über zwei Tage hinweg mit spannenden Vorträgen und Poster-Präsentationen.
Prof. Dr. Rüdiger Quay, Institutsleiter des Fraunhofer IAF, und Dr. Alexander Heinrich, Leiter der Geschäftsstelle QuantumBW, verdeutlichten in ihrer Eröffnungsrede die Bedeutung innovativer Ideen für den Erfolg der Quantentechnologien. Betont wurde auch die enge Zusammenarbeit mit Photonics BW im Rahmen der Cross-Clustering-Veranstaltungen für Innovations- und Technologietransfer in verschiedenste potenzielle Anwendungsgebiete. Das laufende Projekt „Photonik und Quantentechnologien für die Industrie 4.0 in Baden-Württemberg” von Photonics BW dient der Weiterentwicklung und Nutzung der Quantentechnologien als strategisches Zukunftsfeld – gefördert durch das Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg.
Die Ergebnisse des „SiQuRe II” Projektes wurden präsentiert von Dr. Karl Urban, Gruppenleiter der Materialmodellierung am Fraunhofer IWM. Hier wurden u.a. Cluster von Elektronen in pyramidenförmiger Anordnung, wie sie beispielsweise in der Einheitszelle eines Diamanten vorkommen, auf dem IBM-Q System One Quantencomputer in Ehningen untersucht.
Die Erkenntnisse zur Performance und Stabilität der Quanten-Berechnung sollen in Zukunft auch dabei helfen, Näherungsverfahren aus Chemie und Materialwissenschaft auf klassischen Computern zu verbessern.
Eine Klasse dieser Berechnungs-Methoden stellte Clemes Possel, Doktorand am Fraunhofer ICT und Teil des „QC4BW II” Projektes, vor. Die Verteilung von Elektronen in komplexen Molekülen soll hier mit speziell dafür entwickelter Hardware (auf Basis von NV-Fehlstellen in Diamanten) vorhergesagt werden.
Im Projekt „SEQUOIA End-to-End” stehen Optimierungsprobleme der Wirtschaft im Fokus, wie effiziente Lade-Netzwerke bei E-Mobilität, präsentiert von Dr. Mummaneni (Fraunhofer IAO), oder optimierten Fertigungsstraßen im Vortrag von Dr. Jan Schnabel (Fraunhofer IPA).
Eng verwandt sind die Ansätze zur Optimierung der Resilienz in komplexen Netzwerken, wie Finanzmärkten oder der Stromversorgung, die im „QORA II” Projekt untersucht werden. Die Abbildung dieser Probleme auf aktueller Quanten-Hardware stößt bei bestimmten Netzwerkgrößen auf immer besser verstandene Grenzen. Diese Erkenntnisse spielen eine wichtige Rolle für die Charakterisierung der Rauschprofile aktueller Hardware.
Die Ergebnisse des QuEst+ Projektes präsentierte Albert Pool, Doktorand am DLR Institut für technische Thermodynamik. Hier werden elektrochemische Prozesse in Batterien mithilfe hybrider Algorithmen untersucht, bei denen klassische Computer die Quanten-Hardware unterstützen.
Darüber hinaus wurde eindrücklich gezeigt, wie die kontrollierte Produktion von Diamant-Fehlstellen, eine vielversprechende Quantenplattform, in den Laboren des Fraunhofer IAF und dem dort ansässigen Unternehmen Quantum Brilliance abläuft. Diese auf Quantencomputing basierenden Bausteine werden anschließend im Nachbarlabor, dem “Quanten Computing Lab”, auf ihre Tauglichkeit als Qubit untersucht.
Die Konferenz machte deutlich, wie weit die anwendungsorientierte Forschung im Bereich Quantencomputing in Deutschland ist. Gleichzeitig wurde aufgezeigt, wo die aktuellen Schwierigkeiten der State-of-the-Art Plattformen, wie dem IBM System One in Ehningen, liegen. Eine eigenständige Forschung an rauscharmen Qubits mit Rechenoperationen hoher Güte ist weiterhin enorm wichtig, genau wie die Suche nach geeigneten Algorithmen, welche schon auf aktuellen Systemen Erfolg zeigen.
]]>Zwei weitere Sessions zu den Themen "Was erwarten Spezialisten von einer Stellenanzeige und wo suchen sie nach Jobs? ", sowie "Wie suchen Fachkräfte und Mitarbeiter in Bluecollar Positionen" folgen bereits am 09. und 18. April.
]]>Die Umfrage verdeutlichte ebenfalls die Hemmnisse, die auch die deutsche Photonik-Branche beeinträchtigt, wie der Fachkräftemangel, zu hohe finanzielle Belastungen und eine überbordende Bürokratie.
PHOTONICS GERMANY wird sich dafür einsetzen, die Mitgliedsunternehmen und -forschungseinrichtungen bei den Herausforderungen, mit denen sie sich konfrontiert sehen, bestmöglich zu unterstützen und die politischen Rahmenbedingungen zu verbessern.
Unseren Mitgliedern stellen wir die ausführlichen Ergebnisse in den kommenden Tagen zur Verfügung, u.a. mit den größten Wachstumsfeldern und den attraktivsten Märkten.
]]>„Die Photonics West ist eines der Highlights für die internationale Photonik-Branche. Sowohl der German Pavilion als auch die Messe waren ausgebucht und das Begleitprogramm mit über 5000 Fachvortragen hochkarätig. Besonders gefreut haben wir uns über die gute Stimmung und die große Zufriedenheit unserer Mitglieder und Aussteller“, betont Dr. Andreas Ehrhardt, Vorstand von OptecNet Deutschland.
PHOTONICS GERMANY, die Allianz von SPECTARIS und OptecNet Deutschland, war wieder mit einem eigenen Infostand auf dem German Pavilion vertreten und repräsentierte die über 700 Mitgliedsunternehmen und -forschungseinrichtungen. Der German Pavilion wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) gefördert und vom AUMA – Verband der deutschen Messewirtschaft unterstützt. Die Aufnahme in das Bundesmesseprogramm erfolgte auf Initiative von SPECTARIS und mit Unterstützung von OptecNet Deutschland.
71 Unternehmen und Forschungseinrichtungen waren in diesem Jahr Teil des German Pavilion und präsentierten innovative optische Komponenten und Systemlösungen. Auf Initiative von SPECTARIS in gemeinsamer Durchführung mit dem BMWK wurde der deutsche Gemeinschaftsstand in diesem Jahr erstmals um ein Informationsmodul zur Ansprache und Gewinnung von internationalen Fachkräften erweitert. Ansprechpartner der Zentralen Auslands- und Fachvermittlung (ZAV) der Bundesagentur für Arbeit informierten über den Arbeits- und Lebensstandort Deutschland.
Das Networking-Highlight war erneut der von PHOTONICS GERMANY am 31. Januar veranstaltete GERMAN EVENING mit über 140 Teilnehmenden. Nach einer Begrüßung von Dr. Andreas Ehrhardt und Dr. Wenko Süptitz sprach Generalkonsul Oliver Schramm die Keynote und zeigte sich beeindruckt von der Innovationskraft der Photonik-Branche. Dr. Dorothea Schütz vom BMWK informierte über Deutschland als attraktiven Arbeits- und Lebensstandort. Bereits seit vielen Jahren gehört der GERMAN EVENING zu den beliebtesten Networking-Events für die Akteure der Photonik-Branche.
Die nächste SPIE Photonics West findet vom 28. – 30. Januar 2025 statt.
Bleiben Sie informiert unter
www.photonics-germany.de
www.spectaris.de
www.optecnet.de
Alle Informationen zur Messe erhalten Sie unter w3-fair.com/wetzlar
OptecNet Deutschland ist offizieller Silberpartner der W3+ Fair.
Unseren Mitgliedern stellen wir gerne kostenlose Gästetickets zur Verfügung.
Nehmen Sie einfach Kontakt zu Ihrer regionalen Geschäftsstelle auf.
Wir freuen uns auf Sie!
]]>Photonics BW arbeitet im Rahmen des Förderprojekts „Photonik und Quantentechnologien für die Industrie 4.0 in Baden-Württemberg” – gefördert durch das Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg – eng mit den Partnern des IQST, die größtenteils Mitglieder von Photonics BW sind, zusammen. Ziel des Projekts ist es, durch gezielte Unterstützungsmaßnahmen eine frühzeitige Zusammenarbeit von Forschungseinrichtungen mit Unternehmen zu etablieren und Start-ups zu fördern.
Professorin Stefanie Barz (IQST-Sprecherin und Professorin für Quanteninformationen und -technologie an der Universität Stuttgart), Professor Fedor Jelezko (IQST-Sprecher und Direktor des Instituts für Quantenoptik an der Universität Ulm) und André Schmandke (Ministerium für Wissenschaft, Forschung und Kunst) begrüßten alle Teilnehmenden und gaben einen Vorgeschmack auf die bevorstehenden drei Tage.
IQST-Fellows und internationale Gastsprecher berichteten, vor Fachpublikum sowie Vertretern der Wirtschaft und des Wirtschaftsministeriums, von neuen Erkenntnissen mit besonderem Fokus auf technologischer Nutzbarkeit und bereits etablierten Patenten. Auch abseits der Bühne wurden die aktuellen Trends der Branche thematisiert, darunter optimierte Einzel-Photon-Quellen, medizinische Bildgebung und Chip-Integration von Sensorik und Photonik.
Sechs Gründer aus Stuttgart und Ulm, darunter vier Mitglieder von Photonics BW, präsentierten ihren Weg von der Idee im Labor, hin zu funktionierenden Unternehmen, die heute bestehende Probleme in Industrie und Medizin lösen. Dr. Michael Schlagmüller (COO und Geschäftsführer, Swabian Instruments GmbH) berichtete von weltweit ansässigen Kunden, die von hochpräziser Signalverarbeitung mit extremer zeitlicher Auflösung profitieren.
Im Vortrag von Dr. Simon Thiele (CTO, Printoptix GmbH) standen die Skalierbarkeit und kostengünstige Entwicklung von Prototypen mit 3D-gedruckten Mikro-Optik-Systemen im Vordergrund.
Kunden, die selbst Teil des Quantensektors sind und effiziente sowie kundenorientierte Software für die Entwicklung rauscharmer Quantencomputing-Plattformen benötigen, arbeiten heute schon mit QC Design, gegründet und präsentiert von Dr. Ish Dhand (CEO).
Die NVision Imaging Technologies GmbH, vertreten durch CTO Ilai Schwartz, ermöglicht eine minutenschnelle Analyse von Therapie-Ansprechverhalten in Tumorzellen, vor Ort im Krankenhaus mit Hilfe von hyperpolarisiertem Magnetresonanz-Kontrastmittel.
Dr. Johannes Lang (CEO) zeigte die aktuelle Entwicklung von maßgeschneiderten Diamanten mit NV-Zentren für Sensorik und Computing bei der Diatope GmbH auf.
Abschließend berichtete Dr. Roman Bek (CTO, Twenty-One Semiconductors GmbH) von leistungsstarken Membran-Lasern im gelben Teil des Farbspektrums.
Die sechs Förderprogramme des IQST werden auch in Zukunft die enge Zusammenarbeit von Wissenschaft und Industrie vorantreiben. Hier gibt es Möglichkeiten für niederschwellige Förderung von angehenden Gruppenleitern zu fokussierten Projekten über zwei Jahre, sowie Austauschprogramme für Gastwissenschaftler und Förderung von Netzwerkveranstaltungen.
Besonders die internationale Zusammenarbeit mit Innovationsträgern in Japan, Österreich, Schweiz, Australien, England und Frankreich, vertreten durch Gastsprecher der entsprechenden Institute, soll noch weiter ausgebaut werden. Dazu sind nun auch IQST-Partnerschaften Deutschland- und weltweit möglich.
Über das IQST
Das IQST wurde im Jahr 2014 auf Initiative der Professoren Wolfgang Schleich (Universität Ulm) und Tilman Pfau (Universität Stuttgart) gegründet. Ebenfalls beteiligt war das Max-Plack-Institut für Festkörperforschung (MPI-FKF) in Stuttgart. Das IQST wurde mit dem Ziel ins Leben gerufen, innovative Technologien aus den grundlegenden Erkenntnissen der Quantenphysik zu entwickeln, indem gezielt Synergien zwischen Ingenieurs- und Naturwissenschaften gefördert werden. Dies führte bereits zu erfolgreichen Startup-Ausgründungen und zahlreichen Erkenntnissen in der angewandten Forschung.
]]>Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
]]>
Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
]]>
Einzureichen sind in digitaler Form
Voraussetzungen und Einreichungsmodus
Stichtag ist der 30. April 2024.
Nähere Informationen erhalten Sie hier.
Photonics BW ist als offizieller Partner der Messe erneut an der Planung des Programms beteiligt und Teil des Baden-Württembergischen Gemeinschaftsstandes von QuantumBW. Gefördert vom Wirtschaftsministerium und Wissenschaftsministerium hat das Land Baden-Württemberg mit QuantumBW eine Dachmarke geschaffen, um die Aktivitäten des Landes zentral zu bündeln. Photonics BW kooperiert eng mit QuantumBW und stellt als Teil der gemeinschaftlichen Ausstellung die vielfältigen Unterstützungsangebote in den Bereichen Photonik und Quantentechnologien vor.
Auch in diesem Jahr bildet die Verleihung des Quantum Effects Award ein Highlight der Messe. Ausgezeichnet werden Innovationen, welche die klassische und die Quanten-Welt verbinden, in unterschiedlichen Branchen eingesetzt werden und neue Dienstleistungen ermöglichen. OptecNet Deutschland hat den Preis gemeinsam mit der Messe Stuttgart ins Leben gerufen.
Profitieren Sie bis zum 29. Februar 2024 vom Frühbucherrabatt für Aussteller!
Alle Informationen hierzu finden Sie hier.
Strukturdefekte wie Risse, Ausscheidungen oder weitere Unregelmäßigkeiten in metallischen Materialien führen zu lokalen Veränderungen im Magnetfeld, welche sich mit Magnetometern zerstörungsfrei prüfen lassen. Quantenmagnetometer sind deutlich empfindlicher als herkömmliche Technologien und können selbst winzige magnetische Veränderungen in Materialien detektieren. »In der Automobil- oder Luft- und Raumfahrttechnik ist es essentiell, die Zuverlässigkeit und Widerstandsfähigkeit der Werkstoffe sicherzustellen, allerdings sind die bisherigen Technologien entweder zu groß oder stehen der Industrie nicht zur Verfügung«, sagt Prof. Dr. Rüdiger Quay, Projektleiter von »QMag« und Institutsleiter des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF.
Im Projekt »Quantenmagnetometrie«, kurz »QMag«, haben Fraunhofer-Forschende Quantensensoren für konkrete industrielle Anwendungen untersucht und weiterentwickelt. Dafür arbeiteten sie mit zwei komplementären Ansätzen: Zum einen nutzten sie optisch gepumpte Magnetometer (OPMs), die sich durch ihre extrem hohe Magnetfeldempfindlichkeit auszeichnen, zum anderen verwendeten sie bildgebende Quantenmagnetometer auf der Basis von NV-Zentren in Diamant mit extrem hoher Ortsauflösung.
Beide Technologien funktionieren bei Raumtemperatur und eignen sich für die industrielle Anwendung. Die Forschungsergebnisse zeigen, dass die Quantenmagnetometer bereits Veränderungen im Magnetfeld der Proben detektieren, wenn die Materialermüdung noch nicht sichtbar ist. Die Forschenden haben mittels OPMs die Änderungen des Magnetfelds ferromagnetischer Materialproben gemessen, während diese zyklisch ermüdet wurden. So haben sie gezeigt, dass Quantenmagnetometer kleinste Materialdefekte viel früher erkennen als herkömmliche Technologien. Zudem konnte die Messdauer verkürzt werden, was für den Einsatz in industriellen Prozessen wie der Bauteilprüfung sehr wichtig ist.
In der Materialprüfung können OPMs und NV-Magnetometer komplementär eingesetzt werden: Während die OPMs ein dynamisches Signal aus der ganzen Probe liefern, können mittels NV-Magnetometrie die magnetischen Eigenschaften einzelner Schädigungen auf der Mikro- und Nanoskala im Detail gemessen werden. »In der Materialprüfung können Quantenmagnetometer dazu beitragen, das Versagen von ferromagnetischen Bauteilen abzuschätzen, bevor die Materialien erkennbare Risse aufweisen. Dies spielt insbesondere bei sicherheitskritischen Bauteilen eine wesentliche Rolle«, sagt Dr. Simon Philipp, Forscher am Fraunhofer-Institut für Werkstoffmechanik IWM.
Weitere Anwendungen in der Biomedizin, Durchflussmessung und Chipindustrie
Den Forschenden ist es zudem gelungen, ein neues NV-Magnetometer zu entwickeln, das bei der Materialprüfung zu schnelleren Ergebnissen führt und sogar weitere Anwendungen ermöglicht: Das Weitfeldmagnetometer misst Magnetfelder über einen großen Probenbereich in sehr kurzer Zeit und eignet sich damit für schnelle Messungen im industriellen Einsatz. »Das Weitfeldmagnetometer kann für die Charakterisierung und Optimierung von ferromagnetischen Werkstoffen eingesetzt werden, aber es eignet sich auch sehr gut für Anwendungen in der Biomedizin und der Medizintechnik. Organische Proben können damit zerstörungsfrei und bildgebend untersucht werden«, sagt Niklas Mathes, Forscher am Fraunhofer IAF.
Einen weiteren Erfolg erzielten die Forschenden beim Einsatz von OPMs in der Durchflussmessung: Sie haben ein gänzlich neues Verfahren zur Messung der Fließgeschwindigkeiten von Flüssigkeiten in einem Rohr entwickelt, das auf OPMs basiert. Die magnetometrische Durchflussmessung ist ein kontaktloses Verfahren, das auf eine Vielzahl von Medien anwendbar ist und sich für den Einsatz in der Prozesskontrolle eignet. Dieses Verfahren stellt einen bedeutenden Fortschritt dar, weil bisherige Methoden zur Durchflussmessung meistens invasiv sind.
Außerdem hat das Projektteam den Einsatz von Quantenmagnetometern in der Mikro- und Nanoelektronik sowie der Chipherstellung untersucht und enormes Potenzial festgestellt: Bei der Qualitätskontrolle lassen sich mit Quantenmagnetometern elektrische Schaltkreise vermessen und beispielsweise fehlerhafte Transistoren sofort identifizieren.
Testmöglichkeiten für die Industrie
Um die Forschungsergebnisse der Industrie zugänglich zu machen und die entwickelten Technologien für spezifische Anwendungen zu testen, wurden im Rahmen des Projekts zwei Technika errichtet. Am Fraunhofer-Institut für Physikalische Messtechnik IPM wurde ein magnetisch abgeschirmter Raum installiert, der für Testmessungen genutzt werden kann. »Die magnetische Umgebung im Technikum weist ein Restfeld von weniger als 5 Nanotesla auf und bietet eine sehr hohe Rauschunterdrückung. So ist es hier sogar möglich, kleinste Magnetfelder zu messen, die von Hirnströmen erzeugt werden. Diese Umgebung stellen wir der Industrie für Messdienstleistungen zur Verfügung«, erklärt Dr. Peter Koss, Forscher am Fraunhofer IPM.
Um den Transfer der Quantenmagnetometer in die Industrie zu erleichtern, wurde am Fraunhofer IAF ein weiteres Technikum errichtet, das mehrere NV-Magnetometer enthält. Es ermöglicht interessierten Unternehmen, insbesondere KMU und Start-ups, den Nutzen und das Potenzial von Quantenmagnetometern für ihre spezifischen Anforderungen zu evaluieren.
Über das Projekt »QMag«
Im Fraunhofer-Leitprojekt »Quantenmagnetometrie« haben sich fünf deutsche Fraunhofer-Institute und das britische Fraunhofer CAP zusammengeschlossen, um Quantensensoren aus dem Labor in die Industrie zu bringen. Das Projekt lief von 2019 bis 2023 und wurde mit 10 Mio. Euro zu gleichen Teilen von der Fraunhofer-Gesellschaft und dem Ministerium für Wirtschaft, Arbeit und Tourismus Baden-Württemberg gefördert.
Das Projektkonsortium bestand aus:
Akademisch beraten wurde das Konsortium von Prof. Dr. Jörg Wrachtrup von der Universität Stuttgart und von Prof. Dr. Svenja Knappe von der University of Colorado Boulder.
www.quantenmagnetometrie.de
Nähere Informationen erhalten Sie hier.
]]>1. Nummer 1.3 wird wie folgt neu gefasst:
Der Bund gewährt die Zuwendungen nach Maßgabe dieser Förderrichtlinie, der §§ 23 und 44 der Bundeshaushaltsordnung (BHO) und den dazu erlassenen Verwaltungsvorschriften sowie der „Richtlinien für Zuwendungsanträge auf Ausgabenbasis (AZA/AZAP/AZV)“ und/oder der „Richtlinien für Zuwendungsanträge auf Kostenbasis von Unternehmen der gewerblichen Wirtschaft (AZK)“ des BMBF. Ein Anspruch auf Gewährung der Zuwendung besteht nicht. Vielmehr entscheidet die Bewilligungsbehörde aufgrund ihres pflichtgemäßen Ermessens im Rahmen der verfügbaren Haushaltsmittel.
Nach dieser Förderrichtlinie werden staatliche Beihilfen auf der Grundlage von Artikel 25 Absatz 1 und 2 Buchstabe a, b, c und d der Allgemeinen Gruppenfreistellungsverordnung (AGVO) der EU-Kommission gewährt.1 Die Förderung erfolgt unter Beachtung der in Kapitel I AGVO festgelegten Gemeinsamen Bestimmungen, insbesondere unter Berücksichtigung der in Artikel 2 der Verordnung aufgeführten Begriffsbestimmungen (vgl. hierzu die Anlage zu beihilferechtlichen Vorgaben für die Förderrichtlinie).
2. Nummer 7.2 wird wie folgt neu ergänzt:
Zur Erstellung von förmlichen Förderanträgen ist das elektronische Antragssystem „easy-Online“ zu nutzen ( https://foerderportal.bund.de/easyonline ). Es besteht die Möglichkeit, den Antrag in elektronischer Form über dieses Portal unter Nutzung des TAN-Verfahrens oder mit einer qualifizierten elektronischen Signatur einzureichen. Daneben bleibt weiterhin eine Antragstellung in Papierform möglich.
3. Nummer 8 wird wie folgt neu gefasst:
Diese Förderrichtlinie tritt am Tag ihrer Veröffentlichung im Bundesanzeiger in Kraft. Die Laufzeit dieser Förderrichtlinie ist bis zum Zeitpunkt des Auslaufens ihrer beihilferechtlichen Grundlage, der AGVO, zuzüglich einer Anpassungsperiode von sechs Monaten, mithin bis zum 30. Juni 2027, befristet. Sollte die zeitliche Anwendung der AGVO ohne die Beihilferegelung betreffende relevante inhaltliche Veränderungen verlängert werden, verlängert sich die Laufzeit dieser Förderrichtlinie entsprechend, aber nicht über den 31. Dezember 2028 hinaus. Sollte die AGVO nicht verlängert und durch eine neue AGVO ersetzt werden oder sollten relevante inhaltliche Veränderungen der derzeitigen AGVO vorgenommen werden, wird eine den dann geltenden Freistellungsbestimmungen entsprechende Nachfolge-Förderrichtlinie bis mindestens 31. Dezember 2028 in Kraft gesetzt werden.
4. Die beihilferechtliche Anlage wird ersetzt durch folgenden Inhalt:
Für diese Förderrichtlinie gelten die folgenden beihilferechtlichen Vorgaben:
1 Allgemeine Zuwendungsvoraussetzungen
Die Rechtmäßigkeit der Beihilfe ist nur dann gegeben, wenn im Einklang mit Artikel 3 AGVO alle Voraussetzungen des Kapitels I AGVO sowie die für die bestimmte Gruppe von Beihilfen geltenden Voraussetzungen des Kapitels III erfüllt sind. Es wird darauf hingewiesen, dass gemäß der Rechtsprechung der Europäischen Gerichte die nationalen Gerichte verpflichtet sind, eine Rückforderung anzuordnen, wenn staatliche Beihilfen unrechtmäßig gewährt wurden.
Staatliche Beihilfen auf Grundlage der AGVO werden nicht gewährt, wenn ein Ausschlussgrund nach Artikel 1 Absatz 2 bis 6 AGVO gegeben ist. Dies gilt insbesondere, wenn das Unternehmen einer Rückforderungsanordnung aufgrund eines früheren Beschlusses der Kommission zur Feststellung der Unzulässigkeit einer Beihilfe und ihrer Unvereinbarkeit mit dem Binnenmarkt nicht nachgekommen ist.
Gleiches gilt für eine Beihilfengewährung an Unternehmen in Schwierigkeiten gemäß der Definition nach Artikel 2 Absatz 18 AGVO. Ausgenommen von diesem Verbot sind allein Unternehmen, die sich am 31. Dezember 2019 nicht bereits in Schwierigkeiten befanden, aber im Zeitraum vom 1. Januar 2020 bis 31. Dezember 2021 zu Unternehmen in Schwierigkeiten wurden nach Artikel 1 Absatz 4 Buchstabe c AGVO.
Diese Bekanntmachung gilt nur im Zusammenhang mit Beihilfen, die einen Anreizeffekt nach Artikel 6 AGVO haben. Der in diesem Zusammenhang erforderliche Beihilfeantrag muss mindestens die folgenden Angaben enthalten:
Mit dem Antrag auf eine Förderung im Rahmen dieser Förderrichtlinie erklärt sich der Antragsteller bereit:
Der Zuwendungsempfänger ist weiter damit einverstanden, dass:
Im Rahmen dieser Förderrichtlinie erfolgt die Gewährung staatlicher Beihilfen in Form von Zuschüssen gemäß Artikel 5 Absatz 1 und 2 AGVO.
Die AGVO begrenzt die Gewährung staatlicher Beihilfen für wirtschaftliche Tätigkeiten in nachgenannten Bereichen auf folgende Maximalbeträge:
Bei der Prüfung, ob diese Maximalbeträge (Anmeldeschwellen) eingehalten sind, sind die Kumulierungsregeln nach Artikel 8 AGVO zu beachten. Die Maximalbeträge dürfen nicht durch eine künstliche Aufspaltung von inhaltlich zusammenhängenden Vorhaben umgangen werden. Die Teilgenehmigung bis zur Anmeldeschwelle einer notifizierungspflichtigen Beihilfe ist nicht zulässig.
2 Umfang/Höhe der Zuwendungen
Für diese Förderrichtlinie gelten die nachfolgenden Vorgaben der AGVO, insbesondere bezüglich beihilfefähiger Kosten und Beihilfeintensitäten. Dabei geben die nachfolgend genannten beihilfefähigen Kosten und Beihilfeintensitäten den maximalen Rahmen vor, innerhalb dessen die Gewährung von zuwendungsfähigen Kosten und Förderquoten für Vorhaben mit wirtschaftlicher Tätigkeit erfolgen kann.
Artikel 25 AGVO – Beihilfen für Forschungs- und Entwicklungsvorhaben
Der geförderte Teil des Forschungsvorhabens ist vollständig einer oder mehrerer der folgenden Kategorien zuzuordnen:
(vgl. Artikel 25 Absatz 2 AGVO; Begrifflichkeiten gemäß Artikel 2 Nummer 84 ff. AGVO).
Zur Einordnung von Forschungsarbeiten in die Kategorien der Grundlagenforschung, industriellen Forschung und experimentellen Entwicklung wird auf die einschlägigen Hinweise in Randnummer 79 und in den Fußnoten 59, 60 sowie 61 des FuEuI-Unionsrahmens verwiesen.
Die beihilfefähigen Kosten des jeweiligen Forschungs- und Entwicklungsvorhabens sind den relevanten Forschungs- und Entwicklungskategorien zuzuordnen.
Beihilfefähige Kosten sind:
Die beihilfefähigen Kosten von Durchführbarkeitsstudien sind die Kosten der Studie (Artikel 25 Absatz 4 AGVO).
Die Beihilfeintensität pro Beihilfeempfänger darf folgende Sätze nicht überschreiten:
Die Beihilfeintensitäten für industrielle Forschung und experimentelle Entwicklung können im Einklang mit Artikel 25 Absatz 6 Buchstabe a bis d auf bis zu 80 % der beihilfefähigen Kosten angehoben werden, wobei die Buchstaben b, c und d nicht miteinander kombiniert werden dürfen:
Die Beihilfeintensität für Durchführbarkeitsstudien kann bei mittleren Unternehmen um 10 Prozentpunkte und bei kleinen Unternehmen um 20 Prozentpunkte erhöht werden.
Die beihilfefähigen Kosten sind gemäß Artikel 7 Absatz 1 AGVO durch schriftliche Unterlagen zu belegen, die klar, spezifisch und aktuell sein müssen.
Für die Berechnung der Beihilfeintensität und der beihilfefähigen Kosten werden die Beträge vor Abzug von Steuern und sonstigen Abgaben herangezogen.
3 Kumulierung
Bei der Einhaltung der maximal zulässigen Beihilfeintensität sind insbesondere auch die Kumulierungsregeln in Artikel 8 AGVO zu beachten. Die Kumulierung von mehreren Beihilfen für dieselben förderfähigen Kosten/Ausgaben ist nur im Rahmen der folgenden Regelungen beziehungsweise Ausnahmen gestattet:
Werden Unionsmittel, die von Organen, Einrichtungen, gemeinsamen Unternehmen oder sonstigen Stellen der Union zentral verwaltet werden und nicht direkt oder indirekt der Kontrolle der Mitgliedstaaten unterstehen, mit staatlichen Beihilfen kombiniert, so werden bei der Feststellung, ob die Anmeldeschwellen und Beihilfehöchstintensitäten oder Beihilfehöchstbeträge eingehalten werden, nur die staatlichen Beihilfen berücksichtigt, sofern der Gesamtbetrag der für dieselben beihilfefähigen Kosten gewährten öffentlichen Mittel den in den einschlägigen Vorschriften des Unionsrechts festgelegten günstigsten Finanzierungssatz nicht überschreitet.
Nach der AGVO freigestellte Beihilfen, bei denen sich die beihilfefähigen Kosten bestimmen lassen, können kumuliert werden mit
Beihilfen, bei denen sich die beihilfefähigen Kosten nicht bestimmen lassen, können mit anderen staatlichen Beihilfen, bei denen sich die beihilfefähigen Kosten auch nicht bestimmen lassen, kumuliert werden, und zwar bis zu der für den jeweiligen Sachverhalt einschlägigen Obergrenze für die Gesamtfinanzierung, die im Einzelfall in der AGVO oder in einem Beschluss der Europäischen Kommission festgelegt ist.
Nach der AGVO freigestellte staatliche Beihilfen dürfen nicht mit De-minimis-Beihilfen für dieselben beihilfefähigen Kosten kumuliert werden, wenn durch diese Kumulierung die in Kapitel III AGVO festgelegten Beihilfeintensitäten oder Beihilfehöchstbeträge überschritten werden.
Die Änderungen der Richtlinie treten am Tag der Veröffentlichung im Bundesanzeiger in Kraft.
Bonn, den 3. Januar 2024
Bundesministerium für Bildung und Forschung
1 Verordnung (EU) Nr. 651/2014 der Kommission vom 17. Juni 2014 zur Feststellung der Vereinbarkeit bestimmter Gruppen von Beihilfen mit dem Binnenmarkt in Anwendung der Artikel 107 und 108 des Vertrags über die Arbeitsweise der Europäischen Union (ABl. L 187 vom 26.6.2014, S. 1), geändert durch die Verordnung (EU) 2017/1084 vom 14. Juni 2017 (ABl. L 156 vom 20.6.2017, S. 1), die Verordnung (EU) 2020/972 vom 2. Juli 2020 (ABl. L 215 vom 7.7.2020, S. 3), die Verordnung (EU) 2021/1237 vom 23. Juli 2021 (ABl. L 270 vom 29.7.2021, S. 39) und die Verordnung (EU) 2023/1315 vom 23. Juni 2023 (ABl. L 167 vom 30.6.2023, S. 1).
2 Beispielsweise im Rahmen einer Einzelfallprüfung nach Artikel 12 AGVO durch die Europäische Kommission.
3 (Die Transparenzdatenbank der EU-Kommission kann unter
https://webgate.ec.europa.eu/competition/transparency/public?lang=de aufgerufen werden.) Maßgeblich für diese Veröffentlichung sind die nach Anhang III der Verordnung (EU) Nr. 651/2014 der Kommission vom 17. Juni 2014 geforderten Informationen. Hierzu zählen unter anderem der Name oder die Firma des Beihilfeempfängers und die Höhe der Beihilfe.
Wie kam es dazu, dass Sie ursprünglich als Vertriebsunternehmen zur Herstellung Ihrer eigenen Produkte übergegangen sind?
Viele Kunden, die Laserdioden in ihren Systemen einsetzen wollen, sind nicht mit dem Bau von Kollimatoren, Faserkopplungen oder Ähnlichem vertraut. Oft ist kein Reinraum für die Verarbeitung von optischen Komponenten vorhanden. Dies erkannten wir als Chance für unser Unternehmen, einen Mehrwert zur Distribution an unsere Kunden zu liefern. Hierfür entwickeln wir in enger Zusammenarbeit mit unseren Kunden optische Aufbauten und Elektroniken, sowie Mechaniken.“
Wie gehen Sie mit der Konkurrenz aus Asien um?
„Wegen der preisgünstigen Konkurrenz aus Asien - insbesondere aus China - wird es für uns schwieriger, Standardprodukte zu vermarkten. Deswegen setzen wir verstärkt auf maßgeschneiderte, hochwertige, kundenspezifische Produkte.“
Was stellte Sie vor die größten Herausforderungen, als Sie alleiniger Geschäftsführer wurden?
„Es war ein reibungsloser Übergang. Wir haben fünf Jahre lang an der Übergabe gearbeitet, bevor ich das Unternehmen dann tatsächlich übernahm. Unter anderem wurde eine zweite Führungsebene mit einem CTO, CFO, COO und CSO etabliert. Das hat sehr gut funktioniert. Der CFO wurde kurz vor dem Ruhestand meiner Mutter eingestellt, und die Positionen des COO und des CTO konnten mit langjährigen Mitarbeiter*innen besetzt werden."
Welche Herausforderungen erwarten Sie für die Zukunft?
„Generell wollen wir auf dem Gebiet, in dem wir tätig sind, wachsen. Für die Zukunft sehen wir einen steigenden Bedarf an immer komplexeren Produkten. Unsere Kunden hierbei zu unterstützen und ihnen einen Zugang zu Fertigungsdaten in Echtzeit zu ermöglichen – darauf wollen wir uns fokussieren. Um dem gerecht zu werden, strukturieren wir unsere Fertigung um und setzen auf eine neue Produktionsstrategie mit Schwerpunkt auf Digitalisierung. Je komplexer ein System wird, desto mehr steigt die Zahl der möglichen Fehlerquellen und damit der Aufwand, diese zu identifizieren. Es ist wie in der Physik: je tiefer man in etwas einsteigt, desto komplexer wird es. Stehen mehr Daten zur Verfügung, desto einfacher erkennt man Zusammenhänge.
Eine weitere Herausforderung besteht darin, dass wir in der Regel auf Grund von Geheimhaltungsvereinbarungen unsere Lösungen nicht bewerben dürfen. Unsere Sichtbarkeit wollen wir verbessern und nehmen regelmäßig an verschiedenen Veranstaltungen teil, so zum Beispiel auch an Veranstaltungen von EPIC (European Photonics Industry Consortium).“
Ein Verbundprojekt kann von einem Konsortium durchgeführt werden, das ein "federführendes" Unternehmen benennt und Industriepartner jeder Größe oder Forschungspartner zusammenbringt. Ein Konsortium muss mindestens ein KMU sowie ein Forschungslabor umfassen und kann ein oder mehrere Großunternehmen einbeziehen.
Die Einreichungsfrist für Projektskizzen ist der 20. März 2024.
Die Einreichung erfolgt über die Website von Quantum without borders.
Die Einreichungen werden in einem zweistufigen Verfahren geprüft. Ein vollständiger Vorschlag wird von einer trilateralen Kommission bewertet. Die Konsortien werden dann aufgefordert, einen nationalen Antrag mit detaillierten Budgets einzureichen.
Am 25. Januar 2024 um 10 Uhr veranstaltet der Projektträger VDI Technologiezentrum außerdem eine virtuelle Infoveranstaltung. Anmelden können Sie sich hier.
Vor Einreichung einer Projektskizze wird eine Kontaktaufnahme mit dem Projektträger VDI Technologiezentrum empfohlen.
Die vollständige Pressemeldung mit weiteren Informationen erhalten Sie hier.
]]>„OptecNet Deutschland möchte als Dachverband der regionalen Innovationsnetze für die Photonik und die Quantentechnologien den größtmöglichen Mehrwert für die Verbandsmitglieder generieren und entwickelt dazu die Unterstützungsangebote kontinuierlich weiter“, erläutert Dr. Andreas Ehrhardt, Geschäftsführer von Photonics BW.
„Mit OptecNet Deutschland können wir als etablierte Vernetzungsplattform sowohl bundesweite als auch internationale Fachveranstaltungen für die Branche anbieten“, ergänzt Dr. Horst Sickinger, Geschäftsführer von bayern photonics.
In einem gemeinsamen Strategie-Meeting am 12. Dezember erarbeiteten die Geschäftsführerinnen und Geschäftsführer der regionalen Netzwerke unter Einbeziehung der Ergebnisse der Mitgliederbefragung Angebote und Dienstleistungen für eine zukunftsweisende Verbandsarbeit.
Der gemeinnützige OptecNet Deutschland e.V. vereint rund 600 Unternehmen und Forschungs-/Bildungseinrichtungen und ist damit der mitgliederstärkste Verband für die Photonik und Quantentechnologien in Deutschland.
Der Dachverband lädt alle Unternehmen und Forschungseinrichtungen der Branche zu einem engen Zusammenwirken innerhalb des Verbands und den regionalen Innovationsnetzen ein.
Gerne vermitteln wir Ihnen auch den direkten Kontakt zu Ihrem regionalen Netzwerk.
]]>Kontakt:
Light Conversion
Keramiku st. 2B, LT-10233
Vilnius, Lithuania
E-Mail: christian.hellwig(at)lightcon.com
Internet: www.lightcon.com
]]>
Schnell: Konstante Geschwindigkeit von bis zu 950 mm/s
Dynamisch: Hohe Beschleunigungen bis zu 20m/s2
Präzise: Hochauflösendes inkrementelles Messsystem
Geradheit: Hohe Tragkraft und minimale Winkelfehler über den gesamten Verfahrbereich
Geschützt: Geschlossene Bauweise mit Metallabdeckung
Erweiterbar: Bauliche Voraussetzung für eine flexible Kombinierbarkeit mit weiteren Achsen und Drittsystemen
Der LINPOS M ermöglicht schnelle, konstante Bewegungen bei hoher Tragkraft mit hervorragender Geradheit und minimalen Winkelfehlern über den gesamten Verfahrbereich.
Die hohe Beschleunigung von bis zu 20 m/s² prädestiniert den kompakten LINPOS S besonders für Anwendungen, bei denen schnelles und gleichmäßiges Scannen in kleinen äquidistanten Schritten erforderlich ist.
Der ROTPOS M kompensiert hohe axiale und radiale Belastungen und zeichnet sich durch eine hervorragende Steifigkeit aus. Praktisch: Die freie Apertur von 25 mm Durchmesser ermöglicht Durchlicht-Anwendungen oder kann für das Kabel.Management genutzt werden.
Die drei neuen OWIS Positioniertische sind robust, wartungsarm, von hoher Qualität und eignen sich für ein breites Spektrum von Anwendungen im industriellen Umfeld. Beispiele sind die Halbleiterfertigung, Laserbearbeitung, Präzisionsmessung, optische Inspektion und additive Fertigung.
Entdecken Sie die neue Generation von Positioniertischen mit Direktantrieb.
Weitere Informationen, Zeichnungen und Konstruktionsdateien finden Sie unter https://www.owis.eu/
Pressekontakt:
Janina Landauer
Marketing
Tel: +49 (7633) 9504-735
E-Mail: marketing(at)owis.eu
Über PHOTONICS GERMANY und PHOTONICS21:
PHOTONICS GERMANY, die Allianz von OptecNet Deutschland und SPECTARIS, stärkt die deutsche Photonik-Industrie als repräsentativer Ansprechpartner der Politik auf nationaler und europäischer Ebene. Die Allianz initiiert Aktivitäten zur Steigerung der Wettbewerbsfähigkeit von Unternehmen und Forschungseinrichtungen. Insbesondere sollen die Rahmenbedingungen für die Photonik und Quantentechnologien weiter verbessert und Förderangebote gezielt ausgebaut werden.
Die Europäische Technologieplattform PHOTONICS21 repräsentiert die Photonik-Community aus Industrie und Forschungsorganisationen. Gemeinsam mit der Europäischen Kommission entwickeln und implementieren die Mitglieder im Rahmen einer Public Private Partnership (PPP) von Horizon Europe eine gemeinsame Photonik-Strategie, um Wachstum und Arbeitsplätze in Europa voranzutreiben.
]]>LOBO darf sich über bislang insgesamt 187 erhaltene ILDA-Awards freuen und belegt damit den ersten Platz der ILDA-Weltrangliste. Als Spitzenreiter der Branche erhielt LOBO in diesem Jahr zwei Auszeichnungen für spektakuläre Shows in der Kategorie „Beams / Atmospherics Show“ und eine weitere Auszeichnung für die Show „Alea Sheran“.
Alle Informationen finden Sie unter www.lobo.de
]]>Volle Gänge, gute Gespräche
Die Ausstellungsfläche war zu einem guten Drittel mit Unternehmen aus Thüringen besetzt. Aber auch Ausstellende aus anderen Bundesländern und aus 10 weiteren Ländern, darunter Großbritannien, Frankreich und die USA nutzen die Möglichkeit, um sich der Region zu präsentieren. Die Zufriedenheit war groß: Laut Ausstellerbefragung planen 84 Prozent der Unternehmen die kommende Veranstaltung im September 2024 bereits wieder fest ein. Nicht nur die 23 Unternehmen des Thüringischen Gemeinschaftsstands hatten alle Hände voll zu tun: „So viele gute Gespräche mit neuen und alten Kontakten in kurzer Zeit an der Wiege der industriellen Optik – so ein Format war in Jena längst überfällig,“ bestätigt Dr. Jörg Wagner, Geschäftsführer von LEJ Leistungselektronik Jena und neuer Vorstandsvorsitzender von OptoNet e.V.
Bestnoten gab es auch von den Besuchern. Diese kamen zum Großteil aus der Region. Aber selbst ausländische Gäste zum Beispiel aus den Niederlanden, Litauen und der Schweiz nutzten die erste Veranstaltung, um mit Unternehmen in der Lichtstadt Jena in Kontakt zu kommen.
Hochkarätige Sprecher von Jenoptik, Zeiss und ASML
Die parallel stattfindende Begleitkonferenz en-tech.talks hatte in Jena ebenfalls einen sehr guten Start. Hochkarätige Sprecher von Jenoptik, Zeiss, ASML, der Fraunhofer-Gesellschaft und vielen mehr referierten über zwei Tage hinweg vor vollen Reihen. Das Interesse war groß. Neben dem EPIC TechWatch schickte die Bundesagentur für Sprunginnovationen SPRIND vier Start-ups mit neuen Ideen zum Pitch auf die Bühne. Weitsichtig war auch die Perspektive, die das Silicon Saxony aufs Podium brachte: Eine engere technologische Zusammenarbeit für Mitteldeutschland bei Fachkräften, Projekten und Finanzierung.
Auf der Campus Area zeigte die Ernst-Abbe-Hochschule acht ihrer laufenden Hochschulforschungsprojekte. Angebote und Unterstützung für ausländische Kooperationsprojekte bot unter anderem das Europe Enterprise Network EEN.
Starke Unterstützung aus der Region Jena/ Thüringen
Insgesamt wurde die W3+ Fair von vielen Fachverbänden sowie von zahlreichen Partnern aus der Region unterstützt, darunter das Thüringer ClusterManagement LEG Thüringen, die Metropolregion Mitteldeutschland, die IHK Ostthüringen zu Gera, der Tridelta Campus Hermsdorf, das Zentrum für Maschinenbau ThZM, Enterprise Europe Network EEN sowie das Medizintechniknetzwerk medways. Letzteres organisierte anlässlich der W3+ Fair eigens einen LifeScience Day.
„Die neue W3+ Fair Jena war ein voller Erfolg. Er basiert auf der starken Photonik-Branche, dem führenden Photonik-Standort Jena/ Thüringen, unseren hoch motivierten Partnern und dem etablierten Messekonzept. Durch die Verknüpfung konnten wir für alle Teilnehmer einen echten Mehrwert schaffen. Die W3+ Fair ist der perfekte Marktplatz für die gesamte Wertschöpfungskette der Enabling Technologies – hier werden Partnerschaften und Ideen für künftige Innovationen geboren,“ ist sich Jörg Brück, Project Director der W3+ Fair sicher.
Auf der W3+ Fair, der Netzwerkmesse für Enabling Technologies, werden Spitzentechnologien vorgestellt, fachübergreifende Netzwerke geknüpft, Wissen getauscht und Innovationen für die großen Themen unserer Zeit auf den Weg gebracht.
Die kommende W3+ Fair Jena findet am 25. + 26. September 2024 statt. Im Frühjahr, am 13 + 14. März 2024, feiert die Messe ihr zehnjähriges Bestehen am Stammort Wetzlar.
Über die W3+ Fair
Die Veranstaltung geht auf eine Industrieinitiative in Wetzlar und Mittelhessen zurück, die die Vernetzung der vier Branchen Optik, Photonik, Elektronik und Mechanik vorantreiben will. Durch neue Schnittstellen sollen zukunftsweisende Technologien auf den Weg gebracht werden. Die Messe fand erstmals im Februar 2014 in Wetzlar statt. Ausgerichtet wird die W3+ Fair vom Hamburger Messeveranstalter Fleet Events (fleet-events.de). Im September 2019 feierte auch die die W3+ Fair Rheintal in der Vierländer Hightech-Region Premiere. Im Jahr 2023 hat der Veranstalter sein Portfolio um die W3+ Fair Jena erweitert.
Pressekontakt:
Tanja Knott
Leiterin PR und Kommunikation
P: +49 40 66 906 919
M: +49 173 31 64 369
E : tanja.knott(at)fleet-events.de
Download:
www.w3-messe.de
Für Presse/Pressemitteilungen
„Ausgehend von einem automatisierten alpha300 Raman Mikroskop, statteten wir dieses mit perfekten Modulen für die Arbeit in der Halbleiterindustrie aus. Mit vergrößertem Scanbereich und intuitiver Software für die Definition von wiederkehrenden Messabfolgen haben wir eine ideale Konfiguration für die Halbleiterforschung in einem System vereint", sagt WITec-Produktmanager Thomas Dieing. "Das Gerät untersucht große Wafer bis 300 mm Durchmesser mit höchster Präzision und demselben Komfort, wie eine gängige Entwicklungsprobe auf einem Objektträger."
Das konfokale Raman-Mikroskop alpha300 Semiconductor Edition verfügt über eine aktive Schwingungsdämpfung und eine optische profilometergesteuerte Fokusstabilisierung. Für standardisierte sowie wiederkehrende Messprozeduren oder die Fernsteuerung des Gerätes in kontrollierten Umgebungen verfügt das System über eine umfassende Automatisierung.
„Focus Editions ist eine neue Serie von vorkonfigurierten, anwendungsorientierten Systemen, in denen WITec die technologischen Vorteile für eine bestimmte Branche übersichtlich bündelt. Die alpha300 Semiconductor Edition ist das erste Produkt dieser Reihe", sagt Harald Fischer, Marketing Director bei WITec. "Die alpha300 Semiconductor Edition ist so konzipiert, dass Entwickler und Forschende sofort mit der Untersuchung großer Halbleiterwafer bis 300 mm durchstarten können“.
Weitere Informationen erhalten Sie auf der WITec alpha300 Semiconductor Edition Produktseite.
Über WITec
WITec ist der führende deutsche Hersteller von Mikroskopiesystemen für modernste Raman-, Rasterkraft- sowie Nahfeld-Mikroskopie (SNOM) und Entwickler der integrierten RISE (Raman Imaging and Scanning Electron) Mikroskopie. Sämtliche Produkte werden am deutschen Stammsitz in Ulm entwickelt und produziert. Zweigstellen in den USA, Japan, Singapur, Spanien und China sichern die Unterstützung der Kundinnen und Kunden auf allen Kontinenten.
WITec Geräte zeichnen sich durch ihre hohe Modularität aus, die es ermöglicht, Kombinationen verschiedener Mikroskopietechniken in einem System miteinander zu verbinden. Bis heute sind die konfokalen Raman-Mikroskope von WITec unübertroffen hinsichtlich Empfindlichkeit, Auflösung und Geschwindigkeit. Seit September 2021 gehört WITec zur Oxford Instruments Gruppe und ergänzt deren umfangreiches Portfolio um führende Technologien für die Raman-Mikroskopie.
Pressekontakt
WITec GmbH
Lise-Meitner-Str. 6, 89081 Ulm, Deutschland
Tel.: +49 (0) 731 140 70 0
E-Mail: press(at)WITec.de
https://Raman.oxinst.de
]]>
Brigitte Waernier-Gut, Ressortleiterin Photonik bei Swissmem, begrüßte die Teilnehmenden zur dreitägigen Delegationsreise beim ersten Programmpunkt, der Non-Profit-Organisation CSEM in Neuchâtel. CSEM deckt ein breites Spektrum an photonischen Technologien ab und entwickelt vielfältige Komponenten, Systeme und Prototypen. Im Anschluss an die Firmenvorstellung konnten die Teilnehmenden aus vier verschiedenen Laborführungen zu den Schwerpunkten „Bildverarbeitung“, „Lasertechnologien“, „PIC-Komponenten“ und „MEMS/Mikro- und Nanooptiken“ wählen.
SUSS MICROOPTICS SA gab anschließend Einblicke in die Fertigung von refraktiven und diffraktiven Mikrooptiken widmet. Das Unternehmen verfügt über umfassende Erfahrung im Optik-Design, der Waferherstellung und vielen weiteren Prozessschritten für unterschiedlichste Anwendungsbereiche.
Die dritte Station des ersten Tages war bei MPS Micro Precision Systems AG (Teil der Faulhaber Group) in Biel. Das Unternehmen fertigt und montiert Komponenten und Mikrosysteme aus den Bereichen Laser, Optische Messtechnik und Mikroskopie. Bei einer anschließenden Führung durch die Produktionshallen wurden die Produkte, u.a. eine künstliche Herzklappe, erlebbar gemacht.
Das Familienunternehmen VICTOR KYBURZ AG aus Safnern fertigt optische Komponenten, wie Linsen, Prismen und Planscheiben aus Saphir, Keramik und weiteren harten Materialien. Nach einer Firmenvorstellung erfolgte eine Führung entlang der gesamten Produktionskette, vom Schneiden der Rohlinge, u.a. mittels Laser, bis hin zur Qualitätsprüfung der fertigen Produkte.
Der zweite Tag begann bei der Optotune Switzerland AG in Dietikon mit Einblicken in das optoelektronische und optomechanische Design von lichtsteuernden Komponenten. Die Anwendungsbereiche sind vielfältig und reichen vom Automobilsektor, über Medizintechnik hin zu Kameramodulen in Smartphones.
Gleich zwei Forschungsinstitute der ETH Zürich wurden anschließend besichtigt. Dort gaben Prof. Dr. Juerg Leuthold und seine Forschungsgruppe tiefgehende Einblicke in das Institut für Elektromagnetische Felder. Mögliche Anwendungsfelder der theoretischen Forschungsergebnisse sind u.a. die optische und drahtlose Kommunikation und Photovoltaik-Anwendungen. Das Institut für Quantenelektronik um Prof. Dr. Lukas Paul Gallmann und Prof. Dr. Tilman Esslinger umfasst neun Forschungsgruppen, die sich u.a. der Quantenoptik, Quanteninformation und Laserphysik widmen.
Von der Forschung ging es wieder in die Industrie: Das Unternehmen IMT Masken und Teilungen AG aus Greifensee ist spezialisiert auf das Design und die Fertigung von mikrooptischen und mikrofluidischen Komponenten. Die Präzision der Produkte konnten die Teilnehmenden durch die Besichtigung der Ausstellungsobjekte eindrucksvoll erleben.
Bei einem anschließenden Get-together verdeutlichten Werner Kruesi (Swissmem Photonics), Dr. Andreas Ehrhardt (Photonics BW / OptecNet Deutschland), Dr. Horst Sickinger (bayern photonics / OptecNet Deutschland) und Dr. Wenko Süptitz (SPECTARIS) die Bedeutung von gemeinsamen Förderprojekten und Kooperationen zwischen Unternehmen und Forschungseinrichtungen aus Deutschland und der Schweiz. PHOTONICS GERMANY und Swissmem fungieren als Sprachrohr für politische Themen und unterstützen u.a. Kooperationsanbahnungen und die Fördermittelakquise mit dem Ziel, die Photonik-Branche im deutschsprachigen Raum nachhaltig zu stärken und Potenziale zu heben.
Nach einem gemütlichen Abendprogramm mit Schweizer Raclette wurde am dritten Tag der Geschäftsanbahnungsreise die Evatec AG besucht, die individuelle Systeme für Poliermaschinen auf Basis der Dünnschichttechnologie fertigt. Bei der Führung durch die Produktionshallen wurde die Vielzahl an unterschiedlichen, kundenspezifischen Komponenten deutlich.
Anschließend ging es für die Teilnehmenden zur SwissOptic AG nach Heerbrugg, die hochpräzise, kundenspezifische Optiken für Anwendungen in der lichtnutzenden Industrie fertigt. Die Teilnehmenden erhielten spannende Einblicke in unterschiedlichste Prozessschritte bis zum Endprodukt.
Die FISBA AG aus St. Gallen fertigt optische Komponenten und kundenspezifische optische Systeme mit großer Präzision, darunter auch miniaturisierte Optiken für verschiedenste Anwendungsbereiche. Diese hohe Präzision wurde bei der Laborbesichtigung an unterschiedlichen Prozessschritten gezeigt.
Den Abschluss bildete der Vortrag von Dr. Felix Betschon, CEO der vario-optics AG, im Naturmuseum St. Gallen. Das Unternehmen fertigt miniaturisierte, integrierte photonische Systeme, wie elektro-optische Leiterplatten für unterschiedlichste Einsatzbereiche.
Wir bedanken uns sehr herzlich bei allen Unternehmen und Forschungseinrichtungen für die vielen spannenden Eindrücke, neuen Kontaktanbahnungen und bei Swissmem für die herausragende Organisation. Ein ganz besonderer Dank geht an Werner Krüsi und Brigitte Waernier-Gut für die kompetente und herzliche Begleitung auf der Reise!
Wir freuen uns bereits auf ein Wiedersehen bei einer neuen Geschäftsanbahnungsreise in Deutschland!
]]>Kontakt:
LASER COMPONENTS Germany GmbH
Werner-von-Siemens-Str. 15
82140 Olching
E-Mail: info(at)lasercomponents.com
Internet: www.lasercomponents.com
]]>
Kontakt:
PULSED GmbH
Dieselstraße 5
85748 Garching b. München
E-Mail: info(at)pulsed.eu
Internet: www.pulsed.eu
]]>
Weitere Informationen: www.hema.de
Wettbewerb für Studierende und junge Ingenieur:innen
Das Ziel des visioneers awards ist die Förderung von Nachwuchskräften im MINT-Bereich und speziell von Projekten, die sich kreativ mit technischen Aufgabenstellungen rund um FPGAs und Embedded Vision beschäftigen. Damit reiht sich der visioneers award ein in den MINT-Aktionsplan 2.0 des Bundesbildungsministeriums. Der visioneers award richtet sich an Studierende an Hochschulen aus Deutschland, Österreich und der Schweiz, die aktuell an Ihrer Abschlussarbeit für das Studienjahr 2023/24 schreiben. Preisgelder in Höhe von insgesamt 1.200 Euro werden vergeben - darunter auch für den Sonderpreis "Women in Technology". Dieses Thema liegt Charlotte Helzle besonders am Herzen: Sie ist Mitgründerin von hema und leitete das Unternehmen rund 40 Jahre lang, bevor sie die alleinige Geschäftsführung an ihren Sohn Oliver Helzle übertragen hat.
Alle Informationen zur Teilnahme am visioneers award: www.hema.de/visioneers-award
45 Jahre Know-how in der Elektronikentwicklung
Offizieller Start der hema Erfolgsgeschichte war am 01.10.1978, mit der Eintragung des Unternehmens als Ingenieurbüro hema in das Handelsregister. Zu den ersten Serienaufträgen gehörten Geräte für Varta zur Qualitätssicherung in der Batterieproduktion. Es folgte die Entwicklung zahlreicher Steuerungen und Komponenten und seit 1991 die Entwicklung von Produkten für die Bildverarbeitung. Seitdem hat sich hema speziell auf Embedded Vision und die Entwicklung entsprechender Elektroniken spezialisiert. Zu den namhaften Kunden gehören unter anderem Carl Zeiss, die Daimler AG sowie Unternehmen im Bereich Optronics und Defense-Industrie. Seit 2020 war hema Xilinx Alliance Program Member und ist mit der Übernahme durch AMD zum Adaptive Computing Partner Premier von AMD ernannt worden.
Ausgezeichnet für vorbildliche Förderung von Mitarbeitenden
Ein weiterer Meilenstein für hema ist die Auszeichnung mit dem Resilience Award RAW.23, der am Vorabend der Feier zum Firmenjubiläum vergeben wurde. Dabei wurde hema für seine Maßnahmen zur Gewinnung und Förderung von Mitarbeitenden mit dem 3. Platz ausgezeichnet. In der Jury des von Wirtschaftsjunioren Ostwürttemberg und Wirtschaftsclub Ostwürttemberg ausgelobten Preises entscheiden unter anderem Mitglieder der Geschäftsführung von Leitz, Mapal Dr. Kress und Varta über die Vergabe.
Über hemɑ electronic
hemɑ electronic GmbH - the embedded vision expert
hemɑ electronic ist ein führender Entwicklungsdienstleister der Elektronikindustrie im Bereich Hardware- und Softwaredesign für Embedded Vision Boards und Systeme für Anwendungen in der industriellen Automatisierungstechnik, Verteidigungs- und Sicherheitstechnik. Von der Beratung und Konzeption über Design (FPGAs, DSPs, Embedded Processors), Qualifizierungen, Rapid Prototyping und Kleinserienproduktion bis hin zum Lifecycle-Management bietet Ihnen hemɑ electronic alles aus einer Hand. hemɑ electronic unterstützt seine Kunden wirksam dabei, die Weltmarktführer von morgen zu sein.
Kontakt zum Unternehmen:
hemɑ electronic GmbH
Röntgenstr. 31
73431 Aalen, Germany
Tel. +49 7361 / 9495-0
info(at)hema.de
www.hema.de
Ansprechpartner für die Presse:
Mateusz Dobski
Marketing
Tel. +49 7361 / 9495-20
m.dobski(at)hema.de
www.hema.de
Mit dem Einspeisen ins Mittelspannungsnetz konnte das Team des Projekts »MS-LeiKra« nachweisen, dass für PV-Wechselrichter eine höhere Spannungsebene technisch möglich ist. Für die Photovoltaik bedeutet dies unter anderem enorme Kosten- und Ressourceneinsparungen bei passiven Bauteilen und Kabeln. Das Gerät begründet ein neues Systemkonzept für die nächste Generation von PV-Großkraftwerken, welches auch für Anwendungen in Windkraftanlagen, Elektromobilität oder Industrie einsetzbar ist.
Heutige PV-Stringwechselrichter arbeiten mit Ausgangsspannungen zwischen 400 V AC und 800 V AC. Dass trotz weiter steigender Kraftwerksleistungen die Spannung bisher nicht weiter erhöht wurde, hat zwei Gründe: Zum einen die Herausforderung, einen hocheffizienten und kompakten Wechselrichter auf Basis von Silicium-Halbleitern zu bauen. Zum anderen die aktuellen PV-spezifischen Normen, die nur den Bereich der Niederspannung (max. 1.500 V DC bzw. 1.000 V AC ) abdecken. In dem vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) geförderten Projekt entwickelte das Fraunhofer ISE in Kooperation mit den Projektpartnern Siemens und Sumida einen Wechselrichter, der eine Anhebung der Ausgangsspannung in den Mittelspannungsbereich (1.500 V) bei einer Leistung von 250 kVA erlaubt. Möglich wurde dies durch den Einsatz von hochsperrenden Siliciumkarbid-Halbleitern.
Das Forschungsteam setzte außerdem ein Kühlkonzept mit Heatpipes um, so dass durch eine effizientere Kühlleistung auch der Materialeinsatz von Aluminium reduziert werden kann.
Enormes Einsparpotenzial durch dünnere Kabel
In einem typischen Photovoltaik-Kraftwerk sind mehrere Dutzend Kilometer an Kupferkabeln verlegt. Hier liegen erhebliche Einsparpotenziale durch eine Erhöhung der Spannung: Bei einem Stringwechselrichter mit einer Leistung von 250 kVA wird bei einer heute möglichen Ausgangsspannung von 800 V AC ein minimaler Kabelquerschnitt von 120 mm² benötigt. Erhöht man die Spannung auf 1.500 V AC , sinkt der Kabelquerschnitt auf 35 mm². Dies reduziert den Kupferverbrauch um etwa 700 Kilogramm pro Kilometer Kabel. »Unsere Ressourcenanalysen zeigen, dass mittelfristig Kupfer aufgrund der Elektrifizierung des Energiesystems ein knapper Rohstoff wird. Die Erhöhung der Spannung erlaubt einen sparsamen Umgang mit diesen wertvollen Ressourcen«, so Prof. Dr. Andreas Bett, Leiter des Fraunhofer-Instituts für Solare Energiesysteme.
Anpassung der Normen nötig
Mit dem Projekt MS-LeiKra werden die normativen Bedingungen der Niederspannung (< 1000 V AC / <1500 VDC ) verlassen. Die aktuellen PV-spezifischen Normen decken diesen Bereich nicht ab. Daher beschäftigt sich das Projektteam auch mit den normativen Arbeiten, die sich durch die Anhebung der Spannung ergeben.
Partner für Demoprojekt gesucht
Nach der erfolgreichen Einspeisung ins Mittelspannungsnetz sucht das Forschungsteam nun Entwickler von Photovoltaik-Parks und Netzbetreiber für die Erprobung des Kraftwerkskonzeptes im Feld. Neben dem Einsatz in der Photovoltaik ist der Schritt über die Grenzen der Niederspannung hinaus auch für andere Anwendungen wie Windkraftanlagen interessant, wodurch die steigenden Anlagenleistungen ebenfalls große Kabelquerschnitte benötigt werden. Aber auch in der Ladeinfrastruktur für größere Elektro-Fahrzeuge bzw. -fuhrparks oder Industrienetze birgt ein Mittelspannungs-Wechselrichter Einsparpotenzial durch die Reduktion von Kabelquerschnitten.
Mehr Infos: https://www.ise.fraunhofer.de/de/forschungsprojekte/ms-leikra.html
Kontakt
Claudia Hanisch M. A. | Kommunikation | Telefon +49 761 4588-5448 | claudia.hanisch(at)ise.fraunhofer.de
Michael Geiss | Hochleistungselektronik und Systemtechnik | Telefon +49 761 4588-5069 | michael.geiss(at)ise.fraunhofer.de
Fraunhofer-Institut für Solare Energiesysteme ISE | Heidenhofstraße 2 | 79110 Freiburg | www.ise.fraunhofer.de
Kontakt:
Instrument Systems GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com
Kontakt:
Menlo Systems GmbH
Bunsenstr. 5
82152 Martinsried
Germany
Phone: +49 89 189166 0
Fax: +49 89 189166 111
E-Mail:p.krok(at)menlosystems.com
Internet:www.menlosystems.com
]]>
Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
]]>
OptecNet Deutschland, der bundesweite Dachverband der regionalen Innovationsnetze für die Optischen Technologien und Quantentechnologien, war ebenfalls mit einem eigenen Stand vertreten und neben Photonics BW offizieller Launch-Partner der Quantum Effects. Auch zahlreiche Mitglieder von OptecNet Deutschland und Photonics BW waren als Aussteller aktiver Teil der Messe.
„Die Quantum Effects ist genau die Messe, die es jetzt braucht, um die Quantentechnologien aus den Laboren in die verschiedensten Anwendungen zu bringen: Quanten-Computing, Quantensensorik und Quantenkommunikation bieten gänzlich neue Chancen und können für Unternehmen innovative Wachstumsfelder und neue Märkte eröffnen“, betont Dr. Andreas Ehrhardt, Geschäftsführer von Photonics BW und Vorstand von OptecNet Deutschland.
Ein vielfältiges Begleitprogramm bestehend aus hochkarätigen Fachvorträgen, der Quantum Effects Academy für Schüler/innen und Student/innen und dem Qoool Camp mit Event- und Workshopfläche sowie einem Start-up Forum umrahmte die Ausstellung.
Ein bedeutendes Highlight der Messe war die Verleihung des ersten Quantum Effects Award, der herausragende Innovationen in den Kategorien „Quantencomputing Hardware“, „Quantencomputing Software“, „Quantensensorik“ und „Quantenkommunikation“ auszeichnet. OptecNet Deutschland hat den Quantum Effects Award gemeinsam mit der Landesmesse Stuttgart ins Leben gerufen. Dr. Daniel Stadler, Stv. Cluster-Manager NMWP e.V. und Sprecher Quantentechnologien von OptecNet Deutschland, war Vorsitzender der Jury und moderierte die Verleihung des Quantum Effects Award. „Mit dem ‚Quantum Effects Award‘ wurden erstmals international herausragende Entwicklungen der Quantentechnologien ausgezeichnet und bekannt gemacht“, so Dr. Andreas Ehrhardt.
Eine Übersicht zu den diesjährigen Preisträgern und ihren innovativen Technologien erhalten Sie hier. Auch im kommenden Jahr wird es wieder einen Quantum Effects Award geben – mit Verleihung am 8. Oktober 2024.
Die nächste Quantum Effects findet vom 8.-9. Oktober 2024 auf dem Messegelände Stuttgart statt – parallel zur VISION, Weltleitmesse für Bildverarbeitung, und dem Treffpunkt der internationalen Wasserstoff- und Brennstoffzellenbranche, der hy-fcell.
Mehr unter:
]]>Auch die kostenfreie Begleitkonferenzen-tech.talks will Impulse setzen. Rafael Laguna de la Vera von der Bundesagentur für Sprunginnovationen SPRIND eröffnet mit seinem Keynote-Vortrag die Innovation Start-up Show, in der junge Unternehmen ihre Ideen vorstellen. Auch ASML, Zeiss, Jenoptik, Bühler Group und andere schicken renommierte Sprecher, die neuste technologische Entwicklungen der Photonik-Region Thüringen präsentieren. Dazu sind ein EPIC TechWatch sowie einen Vortragsblock zum Thema Medizintechnik geplant. Die Konferenz ist für alle Besucherinnen und Besucher kostenfrei.
Starke Unterstützung aus der Region Thüringen
Fachliche Unterstützung bekommt die W3+ Fair in Jena von den beiden Goldpartnern OptoNet Jena e.V. sowie dem europäischen Photonik-Netzwerk EPIC. Neu in der Riege der Kompetenzpartner – neben langjährigen Wegbegleitern wie Spectaris, OptecNet Deutschland, Photonics Germany oder IVAM – sind Tridelta Campus Hermsdorf, Thüringer Zentrum für Maschinenbau, Medizintechniknetzwerk medways, Metropolregion Mitteldeutschland, EEN enterprise europe network sowie die IHK Ostthüringen zu Gera.
Jörg Brück, Project Director der W3+ Fair: „Wir sind sehr gespannt auf die Erstveranstaltung. Der Zuspruch und das Engagement von allen Seiten sind überwältigend. Jetzt freuen wir uns auf eine starke Messe mit hohem Nutzwert für alle Beteiligten.“
10-jähriges Jubiläum in Wetzlar
Anlass zum Feiern gibt es in Wetzlar: Am 13. + 14. März 2024 steht die 10. W3+ Fair am traditionellen Optikstandort in Mittelhessen auf dem Programm. Hier sind nur noch wenige Messestände frei. Für Aussteller und Besucher sind diverse Highlights geplant.
Mehr Informationen und Bildmaterial auf www.w3-messe.de
Bildmaterial auf der W3+ Fair Presseseite unter Downloads
W3+ Fair Jena auf einen Blick:
Event: 1. W3+ Fair Jena, Netzwerkmesse und Hightech-Begleitkonferenz für Enabling Technologies
Wann: 29. + 30. November 2023
Wo: Sparkassenarena Jena
Öffnungszeiten: 9.30 – 17.00 Uhr
Tickets: 25 Euro Tagesticket, 40 Euro Zweitagesticket
Über die W3+ Fair
Die Veranstaltung geht auf eine Industrieinitiative in Wetzlar und Mittelhessen zurück, die die Vernetzung der vier Branchen Optik, Photonik, Elektronik und Mechanik vorantreiben will. Durch neue Schnittstellen sollen zukunftsweisende Technologien auf den Weg gebracht werden. Die Messe fand erstmals im Februar 2014 in Wetzlar statt. Ausgerichtet wird die W3+ Fair vom Hamburger Messeveranstalter Fleet Events (fleet-events.de). Im September 2019 feierte auch die die W3+ Fair Rheintal in der Vierländer Hightech-Region Premiere. In 2023 erweitert der Veranstalter sein Portfolio um die W3+ Fair Jena.
Über Fleet Events
Die Fleet Events GmbH mit Sitz in Hamburg gehört zu Deutschlands führenden privaten Messe- und Kongressveranstaltern. Mit ihren Tochterfirmen Fleet Education Events und CE Chefs Events konzipiert und realisiert das 2006 gegründete Unternehmen Consumer- und Business-Events wie Babini (ehemals Babywelt), Eat&Style und W3+ Fair sowie die Bildungskongresse DSLK, ÖSLK, DKLK, ÖKLK, DALK und DILK. Die Geschäftsführung liegt bei den Gesellschaftern Dr. Thomas Köhl und Christoph Rénevier.
Pressekontakt:
Tanja Knott
Leiterin PR und Kommunikation
P: +49 40 66 906 919
M: +49 173 31 64 369
E : tanja.knott(at)fleet-events.de
1 Förderziel, Zuwendungszweck, Rechtsgrundlage
1.1 Förderziel
Die erfolgreiche Transformation der deutschen Industrie hin zur Klimaneutralität unter den Anforderungen nachhaltigen Wirtschaftens und daraus abgeleiteter Ziele ist zentral für die Zukunftsfähigkeit Deutschlands als Wirtschafts- und Technologiestandort. Waren diese Ziele in Deutschland bereits eng mit der Energiewende verknüpft, gewinnen im Kontext der Zeitenwende Versorgungssicherheit und der Abbau der Abhängigkeit von Energie(träger)importen zusätzlich an Bedeutung. Ein wesentlicher Baustein für den Wandel des Energiesystems sowie des Mobilitätssektors, weg von fossilen hin zu erneuerbaren Energien und nachhaltigen Energieträgern, sind Energiespeichertechnologien. Für das Bundesministerium für Bildung und Forschung (BMBF) stellt die Batterie daher eine Schlüsseltechnologie im eigentlichen Sinne dar.
Mit dem BMBF-Dachkonzept Batterieforschung werden die Voraussetzungen für den Aufbau einer technologisch souveränen, wettbewerbsfähigen und gleichzeitig nachhaltigen Batteriewertschöpfungskette in und für Europa deutlich verbessert.
Zur Umsetzung des Dachkonzepts Batterieforschung verfolgt das BMBF mit der Förderinitiative „Forschung und Entwicklung an Batterietechnologien für technologisch souveräne, wettbewerbsfähige und nachhaltige Batteriewertschöpfungsketten (B@TS)“ das übergeordnete Ziel, Innovationen im Bereich der Batterietechnologien zu ermöglichen, notwendige Kompetenzen in Wissenschaft und Industrie zu schaffen, Akteure und Zentren synergetisch zu vernetzen und die generierten Konzepte effizient und erfolgreich in die Anwendung zu transferieren. Wissenschaft und Wirtschaft sollen mittelfristig in die Lage versetzt werden, die Wertschöpfungsketten unterschiedlicher Batterietechnologien – allen voran für Lithium-Ionen- und Natrium-Ionen-Batteriezellen – in Deutschland beziehungsweise Europa technologisch souverän abzubilden. Perspektivisch sollen auch weitere Batterietechnologien betrachtet werden, die die Chance auf eine wettbewerbsfähige und gleichzeitig nachhaltige Energiespeicherung bieten. So soll technologische Souveränität bei den Batterietechnologien in Deutschland und Europa erreicht und langfristig gesichert werden.
Ziel dieser Förderrichtlinie ist es,
Diese Förderrichtlinie ermöglicht es, die für die Produktion und Weiterentwicklung von Batteriezellen zentralen Materialien, Fertigungs- und Prozesstechnologien sowie die zugehörigen Recyclingverfahren in verschiedenen Innovationsstadien aufzugreifen und in Richtung industrieller Anwendungen weiterzuentwickeln. Durch die Fortentwicklung des deutschen Ökosystems Batterieforschung werden zudem Strukturen für Exzellenz, Innovation und den Wissenstransfer in die Anwendung verbessert und ausgebaut. Die Förderziele dieser Förderrichtlinie leiten sich direkt aus dem BMBF-Dachkonzept Batterieforschung sowie der Zukunftsstrategie Forschung und Innovation der Bundesregierung ab, mit der die Innovationskraft Deutschlands gestärkt, die technologische Souveränität gesichert und eine nachhaltige Industrie sowie Mobilität ermöglicht werden sollen. Zusätzlich bestehen Bezüge zur Nachhaltigkeitsagenda der Vereinten Nationen und der Deutschen Nachhaltigkeitsstrategie, dem Klimaschutzgesetz der Bundesregierung, dem „European Green Deal“ inklusive des „Green Deal Industrial Plans“ sowie der EU-Batterieverordnung.
1.2 Zuwendungszweck
Die deutsche und europäische Wirtschaft soll mit Unterstützung der Wissenschaft in die Lage versetzt werden, die technologisch souveräne und nachhaltige Produktion von Batteriezellen für unterschiedliche technische Anwendungen in Deutschland und Europa zu beherrschen. Mit einer Zuwendung im Rahmen von B@TS sollen die technologisch-wissenschaftlichen Voraussetzungen hierfür geschaffen werden. Förderfähig sind daher Projekte, die maßgeblich dazu beitragen, Deutschland und Europa den Weg zur Technologieführerschaft bei Batteriematerialien und -komponenten, inklusive der Ausstattung und Anlagentechnik für Batteriefabriken, über alle Stufen einer zirkulären Wertschöpfungskette zu ebnen.
Mittelfristiges Ziel ist es, Deutschland zum Treiber eines nachhaltigen technologischen Fortschritts bei den Batterietechnologien zu machen und die Transformation der zugehörigen Sektoren in Europa hin zur Klimaneutralität zu vollziehen. So sollen etwa bis 2030 in mindestens einer Batteriezellfertigung die Batteriezellproduktion und das Recycling des Produktionsausschusses erfolgreich zu einem geschlossenen Materialkreislauf im industrienahen Maßstab kombiniert werden. Weiterhin wird auch die erfolgreiche Demonstration der Serientauglichkeit von mindestens einer wiederaufladbaren, zu Lithium alternativen Batterietechnologie auf mindestens einer Forschungsproduktionsanlage bis 2030 erwartet.
Geförderte Aktivitäten können Forschungs- und Entwicklungsvorhaben – insbesondere unter Industriebeteiligung, Vernetzungsaktivitäten, gegebenenfalls Erweiterungen der anlagentechnischen Forschungsinfrastruktur an Wissenschaftseinrichtungen sowie in Grenzen Unterstützung bei der Konzeption und Durchführung von Ausbildungs- und Weiterbildungsprogrammen, vorwiegend im akademischen Bereich, umfassen.
Alle geförderten Vorhaben orientieren sich an den Handlungsfeldern des BMBF-Dachkonzepts Batterieforschung (https://www.werkstofftechnologien.de/programm/batterieforschung/bmbf-dachkonzept-batterieforschung). Sie müssen einem oder mehreren Handlungsfeldern dieses Dachkonzepts zugeordnet sein und einen quantitativen Beitrag zu mindestens einem der im BMBF-Dachkonzept Batterieforschung definierten Meilensteinziel der jeweiligen Handlungsfelder oder einem vergleichbaren Ziel leisten.
Die positive Hebelwirkung der Förderrichtlinie für den Forschungs- und Industriestandort Deutschland, der adressierte Ausbau der Batteriekompetenzen und der Transfer in die industrielle Anwendung sollen am Ende der Projektlaufzeit anhand konkreter Indikatoren messbar sein. Anzustrebende Ergebnis- und Verwertungserwartungen sind beispielsweise Erfindungs- und Schutzrechtsanmeldungen, getätigte Investitionen, geplante Portfolio- und Produkterweiterungen, Veröffentlichungen, Konferenzbeiträge sowie Qualifizierungsarbeiten. Der anwendungsgerichtete Transfergedanke des BMBF-Dachkonzepts Batterieforschung wird so weiter gestärkt und Lücken in der Innovationspipeline Batterie geschlossen.
Die Ergebnisse des geförderten Vorhabens dürfen nur in der Bundesrepublik Deutschland oder dem EWR1 und der Schweiz genutzt werden.
1.3 Rechtsgrundlagen
Der Bund gewährt die Zuwendungen nach Maßgabe dieser Förderrichtlinie, der §§ 23 und 44 der Bundeshaushaltsordnung (BHO) und den dazu erlassenen Verwaltungsvorschriften sowie der „Richtlinien für Zuwendungsanträge auf Ausgabenbasis (AZA/AZAP/AZV)“ und/oder der „Richtlinien für Zuwendungsanträge auf Kostenbasis von Unternehmen der gewerblichen Wirtschaft (AZK)“ des Bundesministeriums für Bildung und Forschung (BMBF). Ein Anspruch auf Gewährung der Zuwendung besteht nicht. Vielmehr entscheidet die Bewilligungsbehörde aufgrund ihres pflichtgemäßen Ermessens im Rahmen der verfügbaren Haushaltsmittel.
ach dieser Förderrichtlinie werden staatliche Beihilfen auf der Grundlage von Artikel 22, Artikel 25 Absatz 2 Buchstabe a bis d und Artikel 26 Buchstabe a der Allgemeinen Gruppenfreistellungsverordnung (AGVO) der EU-Kommission gewährt.2 Die Förderung erfolgt unter Beachtung der in Kapitel I AGVO festgelegten Gemeinsamen Bestimmungen, insbesondere unter Berücksichtigung der in Artikel 2 der Verordnung aufgeführten Begriffsbestimmungen (vergleiche hierzu die Anlage zu beihilferechtlichen Vorgaben für die Förderrichtlinie).
2 Gegenstand der Förderung
Gegenstand der Förderung sind projektbezogene Aktivitäten auf dem Gebiet der Forschung, Entwicklung und Innovation in einem oder mehreren der nachstehend genannten Handlungsfelder des BMBF-Dachkonzepts Batterieforschung (https://www.werkstofftechnologien.de/programm/batterieforschung/bmbf-dachkonzept-batterieforschung).
Hierzu gehören schwerpunktmäßig Forschungs- und Entwicklungsverbundvorhaben zwischen Unternehmen, zwischen Unternehmen und Forschungseinrichtungen/Hochschulen oder zwischen Forschungseinrichtungen/Hochschulen. Einzelvorhaben sind nur im begründeten Ausnahmefall möglich. Daneben werden auch die Entwicklung neuer Konzepte und die Durchführung von Maßnahmen, die der Vernetzung der Stakeholder im Bereich der Batterietechnologien oder dem wissenschaftlich-technologischen Austausch hierzu dienen, sowie Verbundvorhaben im Rahmen verschiedener Abkommen zur wissenschaftlich-technischen Zusammenarbeit mit internationalen Partnern adressiert. Ferner können in Einzelfällen Maßnahmen zur Konzeption von Aus- und Weiterbildungsprogrammen, insbesondere im akademischen Bereich, unterstützt werden.
Die Förderung von Hochschulen und außeruniversitären Forschungseinrichtungen bietet im Rahmen von Forschungs- und Entwicklungsvorhaben zudem die Gelegenheit, forschungstechnische Rahmenbedingungen zu optimieren.
Alle Maßnahmen im Rahmen dieser Förderrichtlinie fokussieren auf die Entwicklung nachhaltiger Batteriezellen für die Elektromobilität sowie zur Energiespeicherung in stationären Anwendungen. Darüber hinaus können auch weitere relevante Anwendungsfelder wie zum Beispiel Medizintechnik, industrielle Anwendungen oder Powertools adressiert werden.
Die Forschungs- und Entwicklungsvorhaben zielen auf technologische Entwicklungen entlang der gesamten Wertschöpfungskette Batteriezelle – von der Materialsynthese bis zur Batteriezelle selbst – inklusive der Forschung und Entwicklung zu Prozessen und Produktionsmitteln ab. Gegebenenfalls kann auch über die Wertschöpfungsstufe Batteriezelle hinausgegangen werden, sofern der Fokus in den davorliegenden Wertschöpfungsstufen liegt. Forschungs- und Entwicklungsvorhaben mit dem Themenfokus Recycling beziehen sich auf Komponenten und Materialien von Batteriezellen inklusive der recyclinggerechten Gestaltung, der Zerlegung, der Aufbereitung und der Materialresynthese sowie zugehörige Prozesse und Verfahren. In Grenzen kann auch die Demontage von Batterien und Batteriemodulen mitbetrachtet werden, sofern dies nicht den Fokus der Forschungs- und Entwicklungsarbeiten darstellt.
In Abgrenzung zu anderen Fördermaßnahmen des BMBF werden keine Vorhaben zu Superkondensatoren oder Brennstoffzellen gefördert.
Jedes Förderprojekt muss sich mindestens einem Handlungsfeld des BMBF-Dachkonzepts Batterieforschung zuordnen. Dabei ist konkret darzulegen, welchen quantifizierbaren Beitrag das Forschungs- und Entwicklungsvorhaben zur Erreichung eines oder mehrerer Meilensteinziele des jeweiligen Handlungsfeldes oder – mit ausreichender Begründung – zu einem vergleichbaren Ziel leistet. Die Meilensteinziele können dem BMBF-Dachkonzept Batterieforschung auf der Internetseite https://www.werkstofftechnologien.de/programm/batterieforschung/bmbf-dachkonzept-batterieforschung entnommen werden.
Handlungsfeld 1: Material- und Produktionsprozessforschung
Um technologische Souveränität bei den Batterietechnologien zu erlangen, ist es von entscheidender Bedeutung, Materialien für nachhaltige und leistungsstarke Batterien von morgen inklusive ihrer Produktionsprozesse zu beherrschen. Herstellungs- und Verarbeitungsverfahren von Batteriematerialien sowie die dabei verwendeten Hilfsstoffe sollen zielgerichtet (weiter-)entwickelt werden. Die Verbesserung ökologischer wie ökonomischer Nachhaltigkeit spielt in diesem Kontext eine zentrale Rolle.
Bei Forschungs- und Entwicklungsvorhaben im Handlungsfeld 1 stehen deshalb die Entwicklung, Synthese und Prozessierung von sowohl aktiven als auch passiven Materialien und Komponenten für leistungsstarke Batteriezellen im Fokus. Um den Aspekt der Nachhaltigkeit zu berücksichtigen, soll dabei auf den Einsatz umweltkritischer und -gefährdender Stoffe möglichst verzichtet und eine Reduktion der Kosten angestrebt werden. Durch umfassende Untersuchungen der Materialeigenschaften, des Materialverhaltens sowie des Einflusses von Produktionsprozessen und -parametern auf die Leistungsfähigkeit von Batteriezellen soll es gelingen, einen hohen Qualitätsstandard zu erzielen, Ausschussraten zu reduzieren, negative Umwelteinflüsse zu minimieren und schließlich wettbewerbsfähig zu agieren. Dafür können in den Forschungs- und Entwicklungsvorhaben auch maßgeschneiderte Messtechnik, Analytik, Digitalisierungsansätze und Qualitätssicherungsmaßnahmen betrachtet beziehungsweise entwickelt werden. Die Entwicklung neuer Batteriekonzepte und Materialansätze, innovativer Fertigungstechnologien und Zelldesigns soll in Abstimmung mit dem Maschinen- und Anlagenbau erfolgen. Eine nachhaltige Stärkung des Maschinen- und Anlagenbaus sowie die Fortentwicklung von Verfahren und Anlagen hin zur kreislauffähigen Fertigung sind ein übergeordnetes Ziel.
Handlungsfeld 2: Skalierungsforschung und Digitalisierung
Eine zentrale Herausforderung der anwendungsorientierten Batterieforschung ist der Transfer innovativer Batterietechnologien vom Funktionsdemonstrator in die massentaugliche Serienproduktion. Die Nutzung digitaler Technologien macht die Zusammenhänge zwischen Material-, Prozess- und Batteriezelleigenschaften deutlich und unterstützt die Prozess- und Produktionsoptimierung. Sie kann beispielsweise einen zentralen Beitrag zur Ausschussminimierung und somit zur Ressourcenschonung leisten. Im Rahmen der Skalierungsforschung kann die Serienfertigung neuer und neuartiger Batteriezellen auf Pilotlinien in den industrierelevanten Maßstab skaliert und demonstriert werden. Dabei kann die Forschung und Entwicklung in und an Pilotlinien ein probates Mittel darstellen. Maschinen und Anlagen können so für den Serieneinsatz entwickelt und qualifiziert werden.
Forschungs- und Entwicklungsvorhaben im Handlungsfeld 2 zielen im Rahmen der Skalierungsforschung auf die Entwicklung serienproduktionstauglicher Produktionsprozesse oder Prozessschritte. Die industrielle Leistungsfähigkeit von Materialien und Technologien, die bereits im Labor erfolgreich demonstriert wurden, soll untersucht und in Richtung der industriellen Anwendung vorangebracht werden. Im Fokus von Forschungs- und Entwicklungsvorhaben zur Digitalisierung steht zum einen die Stärkung der Materialforschung zur Verbesserung der Eigenschaften von Batteriezellen. Zum anderen sollen digitale Prozessketten entwickelt werden, mit denen die Auswirkungen von Schwankungen einzelner Prozessschritte auf Folgeprozesse und (Zwischen-)Produkteigenschaften besser erfasst und Verbesserungen abgeleitet werden können. Weiterhin sollen Lösungen der Industrie 4.0, wie agile Anlagentechnik, künstliche Intelligenz und virtuelle Produktionssysteme, genutzt und weiterentwickelt werden. Ein Ziel der Forschungsarbeiten in diesem Handlungsfeld kann die Demonstration einer Innovation in der Forschungsfertigung Batteriezelle in Münster im Industriemaßstab darstellen.
Handlungsfeld 3: Ressourcenschonende Batteriekreisläufe und Rohstoffsicherung
Der Wandel zur Kreislaufwirtschaft, eine Intensivierung des Recyclings und die Ausweitung von sinnvollen Zweitnutzungsansätzen sind wesentlich für die Etablierung einer nachhaltigen, technologisch souveränen Batteriewertschöpfungskette. Die EU-Batterieverordnung stellt hohe Anforderungen beispielsweise an die Recyclingquoten von Batteriematerialien. Dies stellt die deutsche und europäische Batterieindustrie vor neue Herausforderungen, bietet aber gleichzeitig enorme Chancen.
F&E-Vorhaben im Handlungsfeld 3 adressieren Prozesse und Verfahren zum Recycling wie beispielsweise innovative Demontageprozesse für Batteriezellen, recyclinggerechtes Zelldesign, Wiedergewinnung von (kritischen) Rohstoffen inklusive der Resynthese von Materialien oder die Wiederverwertung zurückgewonnener Sekundärrohstoffe. Die Vorhaben sollen einen Beitrag zur Erfüllung der Anforderungen der EU-Batterieverordnung leisten. Vorhaben zu logistischen Themenkomplexen, etwa zur Entwicklung von Sammelsystemen, sind von der Förderung ausgeschlossen. Weiterhin zielen Forschungs- und Entwicklungsvorhaben auf die Evaluierung verschiedener Nutzungsszenarien für 2nd-Life-Anwendungen unter Einbeziehung von „Life Cycle Assessment“ und Lebenszykluskostenrechnungen („Life Cycle Costing“), so dass eine verlässliche Datenbasis für Forschung und Entwicklung entsteht, aber auch eine ökonomisch-ökologisch differenzierte Analyse möglich wird.
Handlungsfeld 4: Aussichtsreiche Technologievarianten der Zukunft
Damit der Sprung in eine neues Batteriezeitalter gelingt, müssen auch zu den aktuell dominierenden Lithium-Ionen-Batterievarianten mit flüssigen Elektrolyten alternative, aussichtsreiche Technologievarianten entwickelt werden. Zum einen bieten beispielsweise lithiumbasierte Festkörperbatterien oder Natrium-Ionen-Batterien mit flüssigen oder festen Elektrolyten ein großes Potenzial hinsichtlich Sicherheit, Schnellladefähigkeit und Nachhaltigkeit für Elektromobilität und stationäre Energiespeicher. Zum anderen können auf dem Weg zu mehr technologischer Souveränität Batteriespeicher auf Basis gut verfügbarer Rohstoffe wie Natrium, Aluminium, Calcium, Eisen oder Magnesium einen signifikanten Beitrag leisten, um durch eine Ausdifferenzierung unterschiedlicher Batterievarianten für verschiedene Anwendungen kritische Versorgungsabhängigkeiten bei Rohstoffen und Komponenten für Batterien zu reduzieren.
F&E-Vorhaben in diesem Handlungsfeld fokussieren auf Festkörperbatterien, Natrium-Ionen-Batterien und andere im Kontext des BMBF-Dachkonzepts Batterieforschung als „alternative Batterietechnologien“ bezeichnete Batterievarianten. Es werden Forschungsaktivitäten im Bereich der Material- und Prozesstechnologie, wie beispielsweise die Optimierung der Verarbeitungsprozesse, die Skalierung der Material-, Elektroden- und Zellherstellung oder die Verbesserung der Zyklenstabilität und Energiedichte, adressiert. Forschungs- und Entwicklungsarbeiten zu alternativen Batteriesystemen können auch die Entwicklung langzeitstabiler Materialien und Batteriezellen, deren Hochskalierung in Richtung eines industrierelevanten Maßstabs oder die Demonstration der Produktionsfähigkeit einer entsprechenden Batteriezelle auf einer Forschungsproduktionslinie – wie der Forschungsfertigung Batteriezelle in Münster – adressieren.
Handlungsfeld 5: Batterie(forschungs)ökosystem
Für den Aufbau einer technologisch souveränen, wettbewerbsfähigen und nachhaltigen Batteriewertschöpfungskette ist die Vernetzung der Akteure entlang der Wertschöpfungskette sowohl in Deutschland und Europa als auch international mit verlässlichen Wertepartnern essentiell. Das in Deutschland bereits bestehende Ökosystem Batterie muss weiterentwickelt und gestärkt werden, was dem zentralen Ziel des Handlungsfelds 5 entspricht.
Geeignete Maßnahmen können zum Beispiel Veranstaltungen sein, die die unterschiedlichen Stakeholder national wie international zusammenführen und der Vernetzung dienen. In diesem Zusammenhang ist auch ein jährliches Statusseminar geplant, bei dem sich Akteure dieser Förderinitiative aktiv vernetzen und austauschen.
Neben der nationalen Vernetzung der Wissenschaftseinrichtungen und der Industrie unter- und miteinander sowie einer Stärkung der Zusammenarbeit, stellt auch die vertrauensvolle wissenschaftliche Zusammenarbeit auf internationaler Ebene einen wichtigen Baustein für den Aufbau einer technologisch souveränen, wettbewerbsfähigen und nachhaltigen Batteriewertschöpfungskette dar. Mit ausgewählten Ländern können bi- oder multilaterale wissenschaftliche Kooperationen durch das BMBF initiiert werden. Hier besteht die Möglichkeit, Verbundvorhaben im Rahmen verschiedener Abkommen zur wissenschaftlich-technischen Zusammenarbeit mit internationalen Partnern durchzuführen. Gegebenenfalls können in entsprechende Verbundvorhaben auch Unternehmen eingebunden werden.
Handlungsbedarf besteht ferner bei der Qualifizierung von Fachkräften sowie von Nachwuchswissenschaftlerinnen und -wissenschaftlern innerhalb des deutschen und europäischen Batterieökosystems für den Hochlauf der europäischen Batteriezellproduktionen. Im Rahmen der in dieser Förderrichtlinie geförderten Einzel- oder Verbundvorhaben können in gewissem Umfang auch Beiträge zum Aufbau von Lernfabriken und Batterieakademien als neue Bildungspfade geleistet werden. Dabei sollen Nutzen und Wirkung dieser Instrumente nicht nur lokal beschränkt bleiben, sondern mindestens bundesweit, wo möglich aber europaweit, positive Effekte erzielen. Der Fokus des Gesamtprojekts muss dabei im Forschungs- und Entwicklungsbereich bleiben.
Im Rahmen eines Begleitvorhabens zu dieser Förderinitiative soll der Stand der Batterietechnologie kontinuierlich verfolgt, evaluiert, kommende Entwicklungstrends prognostiziert und diese Förderinitiative in Bezug auf übergreifende Gesichtspunkte begleitet werden. Auch soll der Stand der Forschungs- und Entwicklungsarbeiten innerhalb dieser Fördermaßnahme im internationalen Vergleich bewertet werden. Die Ergebnisse sollen für einen breiten Kreis von Hochschulen und Wissenschaftseinrichtungen sowie Unternehmen nutzbar gemacht werden.
3 Zuwendungsempfänger
Antragsberechtigt sind Unternehmen der gewerblichen Wirtschaft sowie Hochschulen (Universitäten/Fachhochschulen), außeruniversitäre Forschungseinrichtungen, Vereine, Verbände und Bundesämter.
Zum Zeitpunkt der Auszahlung einer gewährten Zuwendung wird das Vorhandensein einer Betriebsstätte oder Niederlassung (Unternehmen) beziehungsweise einer sonstigen Einrichtung, die der nichtwirtschaftlichen Tätigkeit des Zuwendungsempfängers dient (Hochschule, Forschungseinrichtung, Verein, Verband, Bundesamt und Ähnliches), in Deutschland verlangt.
Forschungseinrichtungen, die von Bund und/oder Ländern grundfinanziert werden, können neben ihrer institutionellen Förderung nur unter bestimmten Voraussetzungen eine Projektförderung für ihre zusätzlichen projektbedingten Ausgaben beziehungsweise Kosten bewilligt bekommen.
Zu den Bedingungen, wann staatliche Beihilfe vorliegt/nicht vorliegt, und in welchem Umfang beihilfefrei gefördert werden kann, siehe FuEuI-Unionsrahmen.
Kleine und mittlere Unternehmen oder „KMU“ im Sinne dieser Förderrichtlinie sind Unternehmen, die die Voraussetzungen der KMU-Definition der EU erfüllen. Der Antragsteller erklärt gegenüber der Bewilligungsbehörde seine Einstufung gemäß KMU-Empfehlung der Kommission im Rahmen des schriftlichen Antrags.
Das Antragsverfahren ist zweistufig angelegt.
In der ersten Verfahrensstufe sind dem beauftragten Projektträger bis spätestens
31. Oktober 2024
28. März 2024
30. September 2024
31. März 2025
30. September 2025
31. März 2026
zunächst Projektskizzen in elektronischer Form vorzulegen.
Die vollständige Pressemeldung finden Sie hier.
]]>Photonics BW ist Teil einer gemeinschaftlichen Ausstellungsfläche des Landes Baden-Württemberg. Wir freuen uns auf Ihren Besuch in Halle C2, Stand 2D15.
Eines der Highlights der neuen Messe wird die Verleihung des Quantum Effects Award 2023 am
10. Oktober sein. Ausgezeichnet werden Innovationen, welche die klassische und die Quanten-Welt verbinden, in unterschiedlichen Branchen eingesetzt werden und neue Dienstleistungen ermöglichen. OptecNet Deutschland hat den Preis gemeinsam mit der Messe Stuttgart ins Leben gerufen.
Außerdem findet am 11. Oktober um 11:15 Uhr ein Science Slam zum Thema „Science meets Creativity” statt, bei dem Wissenschaftlerinnen und Wissenschaftler sowie Studentinnen und Studenten auf unterhaltsame Weise über ihre Forschungsarbeit im Bereich Quantentechnologien berichten.
]]>Seien Sie dabei! Werden auch Sie Teil des German Pavilion und nutzen Sie die Gelegenheit für einen Auftritt bei der SPIE.Photonics West 2024 – dem globalen Branchentreffpunkt für Wissenschaft und Wirtschaft.
Bei einer Teilnahme im Rahmen des German Pavilion können Sie/Ihre ausländischen Niederlassung oder Vertretung in mehrfacher Hinsicht profitieren:
Sind Sie an einer Teilnahme interessiert? Hier finden Sie weitere Informationen:
Anmeldeunterlagen | Online Anmeldung | Website | German Pavilion 2023
Anmeldeschluss ist der 25. September 2023.
Kontakt
Landesmesse Stuttgart GmbH
Julia Weiß · Managerin International Sales · Telefon: +49 711 18560–2840 · E-Mail: julia.weiss(at)messe-stuttgart.de
Wer kann teilnehmen?
Bewertet werden Arbeiten aus allen Bereichen der Natur, Ingenieur- und Informationswissenschaften, die
Bewerbung und Auswahlprozess
Die Bewerbung für den Quantum Futur Award 2023 ist bis zum 28. September möglich.
Alle Informationen sowie das Online-Bewerbungsformular finden Sie hier.
Die Bewerbung umfasst die Abschlussarbeit sowie eine aussagekräftige Kurzfassung (vier Seiten) und einen Lebenslauf. Alle Dokumente sind auf Deutsch oder Englisch einzureichen.
Eine Fachjury besetzt mit Expertinnen und Experten aus Wissenschaft, Wirtschaft und Politik wählt pro Kategorie (Master oder Promotionsarbeiten) fünf Finalistinnen und Finalisten aus.
Diese werden eingeladen, ihre Arbeiten im Rahmen einer öffentlichen Veranstaltung in kurzen Pitches zu präsentieren. Auf Basis der Bewerbungsunterlagen und Pitches ermittelt die Jury die Gewinnerinnen und Gewinner des Awards.
Was gibt es zu gewinnen?
Die Erst- und Zweitplatzierten beider Kategorien (Master- und Promotionsarbeiten) erhalten jeweils Studienreisen im Wert von 6.000 € (1. Platz) bzw. 4.000 € (2. Platz).
Außerdem wird ein Publikumspreis für den besten Pitch vergeben. Die Gewinnerin oder der Gewinner erhält eine Fortbildungsmöglichkeit im Bereich Wissenschaftskommunikation.
Weitere Informationen finden Sie hier.
]]>Kontakt:
LASER COMPONENTS Germany GmbH
Werner-von-Siemens-Str. 15
82140 Olching
E-Mail: info(at)lasercomponents.com
Internet: www.lasercomponents.com
]]>
Kontakt:
Instrument Systems GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com
]]>
Kontakt:
Tobias Herrmann
Public Relations
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: therrmann(at)mpe.mpg.de
Internet: www.mpe.mpg.de
Auch auf der „LASER World of PHOTONICS“ unterstützte der bundesweite Dachverband der neun regionalen Innovationsnetze Optische Technologien und Quantentechnologien seine Mitglieder bei der Fachkräftegewinnung und Nachwuchsförderung: Die Mitglieder hatten die Gelegenheit, ihre Stellenausschreibungen am OptecNet Job-Board zu veröffentlichen, um somit eine breite Zielgruppe zu adressieren. Darüber hinaus wurden die Weiterbildungsseminare und zahlreiche weitere Veranstaltungen der regionalen Netzwerke vorgestellt.
Photonics BW, das Innovationsnetz für die Optischen Technologien und Quantentechnologien in Baden-Württemberg, führte im Rahmen des EU-Projekts Photonics4Industry unterschiedliche Rundgänge zu den Schwerpunktthemen Lasermaterialbearbeitung, Biophotonik, Quantentechnologien, Machine Vision, Optische Messtechnik sowie Optische Komponenten durch. Die zahlreichen internationalen Teilnehmerinnen und Teilnehmer erhielten Einblicke in die neuesten Technologien und Produkte der Mitgliedsunternehmen und hatten die Gelegenheit, neue Kontakte zu knüpfen. Die Gespräche konnten anschließend beim Networking-Event auf dem Messestand von OptecNet Deutschland vertieft werden.
Die „LASER World of PHOTONICS“ fand zum ersten Mal parallel zur „automatica“, Leitmesse für Robotik und Automation, statt und schuf somit branchenübergreifende Synergien. Darüber hinaus begrüßte die „World of QUANTUM“ rund 90 Aussteller, die neueste Technologien und erste Produkte, wie z.B. einen Quantencomputer und Magnetfeldsensor, präsentierten.
Die nächste „LASER World of PHOTONICS“ und „World of QUANTUM“ finden gemeinsam mit der „automatica“ vom 24. – 27. Juni 2025 in München statt.
OptecNet Deutschland plant erneut eine gemeinschaftliche Ausstellung mit den Mitgliedsunternehmen und -forschungseinrichtungen. Wenn auch Sie als Aussteller auf dem Gemeinschaftsstand mit dabei sein möchten, können Sie sich bereits vorab für einen Standplatz vormerken lassen. Weitere Informationen zu den attraktiven Konditionen erhalten Sie auf der Homepage des Dachverbands OptecNet Deutschland unter www.optecnet.de
]]>
Schlüsseltechnologie auf Wachstumskurs
Der Erfolg der Messe spiegelte den anhaltenden Aufwärtstrend der Photonikbranche wider. Schätzungen des Industrieverbands Spectaris zufolge wird der globale Photonikmarkt bis 2025 um sechs Prozent pro Jahr wachsen, der Markt für photonische Kernkomponenten wie z.B. LEDs, Laser und Sensoren sogar um zehn Prozent. Spectaris-Geschäftsführer Jörg Mayer erklärt: „Die Photonikbranche hat in der Vergangenheit mehrfach bewiesen, dass sie dank ihrer vielfältigen Anwendungsgebiete deutlich resilienter als andere Industrien ist. Gerade als Wegbereiter von Zukunftstechnologien wird die Photonik maßgeblich zu Lösung gesellschaftlicher Herausforderungen beitragen“.
Branchenübergreifende Mehrwerte
Erstmals fand zeitgleich die automatica, Leitmesse für Robotik und Automation, statt. Das Ziel, die zahlreichen Überschneidungen zwischen den Branchen gewinnbringend zu nutzen, ging auf: Jeder dritte Besucher der automatica kam auch zur LASER World of PHOTONICS oder World of QUANTUM. Dr. Sven Breitung, Geschäftsführer der VDMA Arbeitsgemeinschaft Laser und Lasersysteme für die Materialbearbeitung, begrüßt die Parallelität ebenfalls: „Es ist uns ein großes Anliegen, Anbieter und Anwender von Lasertechnik sowie Akteure aus der Automation und Robotik zu vernetzen. Die Co-Location bietet ab sofort die perfekte Gelegenheit, um neue Impulse und Mehrwerte zwischen den beiden Branchen zu schaffen und so gemeinsam an innovativen Lösungen zu arbeiten.“
Treffpunkt der internationalen Quantencommunity
Nach der Premiere 2022 fand in diesem Jahr parallel zur LASER World of PHOTONICS eine starke zweite Ausgabe der World of QUANTUM statt mit knapp 90 Ausstellern und über 15.000 Fachbesuchern. „Wir freuen uns sehr, dass die Plattform so hervorragende Besucherzahlen verzeichnen kann und in der Messebefragung Bestnoten erhielt“, sagt Projektleiterin Anke Odouli. Anziehungspunkte waren beispielsweise mehrere Quantencomputer oder ein Magnetfeldsensor, der in naher Zukunft Prothesen über Muskelsignale steuern soll. „Die World of QUANTUM entwickelt sich zur wichtigsten Messe für alle Akteure aus dem Bereich Quantencomputing“, sagt Dr. Robert Axmann, Leiter der Quantencomputing Initiative des Deutschen Zentrums für Luft- und Raumfahrt (DLR). „Deshalb freuen wir uns, mit unserem Messeauftritt einen Ort zu schaffen, an dem Forschung, Industrie und Zulieferer zusammenkommen, um gemeinsam das Ökosystem Quantencomputing voranzubringen.“
Wissenschaftselite zu Gast in München
Auf Europas größtem Photonik-Kongress konnte sich die internationale Wissenschaftselite nach vier Jahren endlich wieder vor Ort austauschen. Darunter waren Größen wie Physik-Nobelpreisträgerin Prof. Donna Strickland, Herbert-Walther-Award-Gewinner Prof. Rainer Blatt oder Prof. Constantin Häfner, der gemeinsam mit Tammy Ma über laserbasierte Kernfusion referierte. Viele der Vorträge waren bis auf den letzten Platz besetzt. Prof. Häfner, Leiter des Fraunhofer-Instituts für Lasertechnik ILT, unterstreicht die Bedeutung des Events: „Der Kongress treibt Innovationen in der Photonik voran und setzt wichtige Impulse für die Zukunft, während er durch Austausch, Präsentationen, Netzwerkbildung und Förderung des wissenschaftlichen Nachwuchses zu einem wegweisenden Ereignis wird.“ In fünf Fachkonferenzen mit insgesamt rund 3.600 wissenschaftlichen Vorträgen und Poster Sessions behandelte der Kongress sechs Tage lang alle Aspekte der Photonik von der Grundlagenforschung bis hin zur anwendungsorientierten Entwicklung.
Die LASER World of PHOTONICS in Zahlen
Über 1.300 Aussteller reisten aus 40 Ländern und Regionen an, 66 Prozent davon aus dem Ausland. Es kamen rund 40.000 Besucher aus über 70 Ländern und Regionen, der Auslandsanteil lag bei rund 55 Prozent. Die Top-Ten-Besucherländer waren nach Deutschland (in dieser Reihenfolge): Großbritannien und Nordirland, Frankreich, Italien, Schweiz, USA, Japan, China, Österreich, Spanien und Südkorea.
Die nächste LASER World of PHOTONICS und World of QUANTUM finden gemeinsam mit der automatica vom 24. bis 27. Juni 2025 in München statt. Der nächste World of Photonics Congress läuft vom 22. bis 27. Juni 2025.
Die Dunkle Seite des Kosmos
Euclid wird zum ersten Mal systematisch den Einfluss von Dunkler Materie und Dunkler Energie auf die Entwicklung und großräumige Struktur des Alls untersuchen. Diese weitgehend unbekannten und unsichtbaren Bestandteile des Universums machen zusammen 95 Prozent des Kosmos aus. Während die Dunkle Materie die Gravitationswirkung zwischen und innerhalb von Galaxien bestimmt und zunächst für eine Abbremsung der Ausdehnung des Weltalls sorgte, ist die Dunkle Energie für die derzeitige beschleunigte Expansion des Universums verantwortlich. Jochen Weller (LMU/MPE) zeigt sich enthusiastisch: „Euclid wird es uns ermöglichen, Einsteins Theorie der Schwerkraft bei großen Entfernungen zu testen und – wer weiß – vielleicht müssen wir seine Theorie erweitern.“
Fast genau zehn Jahre nachdem die Europäische Weltraumagentur ESA diese Weltraummission (mit Beiträgen der NASA)offiziell zur Realisierung auswählte, erwarten nun Hunderte von Wissenschaftlerinnen und Wissenschaftlern des Euclid-Konsortiums weltweit gespannt die Ankunft des Teleskops am Lagrange-Punkt 2 (L2) von Erde und Sonne. Dort wird es Anfang 2024 die wissenschaftlichen Beobachtungen aufnehmen. Das Weltraumteleskop ist nach dem berühmten Mathematiker Euklid von Alexandria benannt, der vermutlich im 3. Jahrhundert v. Chr. tätig war.
Weltweite Zusammenarbeit
Das Konsortium bringt Wissenschaftler und Ingenieure aus 17 Ländern zusammen, hauptsächlich aus Europa, aber auch aus den USA, Kanada und Japan. Es ist für die Entwicklung und den Bau der Messinstrumente, für die Erfassung aller ergänzenden Daten am Boden, für die Entwicklung der Durchmusterungsstrategie und der Datenverarbeitungspipeline zur Erstellung aller kalibrierten Bilder und Kataloge sowie für die wissenschaftliche Qualität der Daten verantwortlich. Die Leitung hat das Institut d'astrophysique de Paris in Frankreich. Die Firmen Thales Alenia Space und Airbus (ehemals Astrium) zeichnen für den Bau des Teleskops verantwortlich, dessen Hauptspiegel einen Durchmesser von 1,2 Metern aufweist.
In Deutschland wurde die Euclid-Mission vom Max-Planck-Institut für Astronomie (MPIA) in Heidelberg, dem Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, der Ludwig-Maximilians-Universität (LMU) in München und der Universität Bonn (UB) mit Unterstützung der Deutschen Raumfahrtagentur im Deutschen Zentrum für Luft- und Raumfahrt (DLR) gemeinsam initiiert und entwickelt. In Schlüsselpositionen waren die Euclid-Gründungsmitglieder Ralf Bender (LMU/MPE), Hans-Walter Rix (MPIA), Peter Schneider (UB) und Jochen Weller (LMU/MPE) beteiligt. Im Jahre 2018 stieß die Ruhr-Universität Bochum (RUB) hinzu.
„Wir sind alle sehr froh über den gelungenen Start“, freut sich Hans-Walter Rix (MPIA). „Nun liegen viele Jahre intensiver Arbeit mit spannenden Ergebnissen vor uns. Wir hoffen, dass wir schließlich einen deutlich verbesserten Blick auf das Universum haben werden.“
Besondere Optik
Das MPE und das MPIA haben entscheidende Elemente zur Optik von Euclid beigetragen. Ein weiterer Mit-Begründer der Mission, Dr Roberto Saglia (MPE/LMU) sowie Dr. Ariel Sanchez (MPE) haben darüber hinaus wesentlich zur wissenschaftlichen Vorbereitung der Mission beigetragen und werden auch bei der Auswertung der Euclid Daten zentrale Positionen einnehmen. Das MPE betreibt darüber hinaus unter der Leitung von Dr. Maximilian Fabricius das deutsche Euclid Science Data Center.
Neben der wissenschaftlichen Fragestellung, die Euclid untersucht, ist auch die verwendete Technik zukunftsweisend. Frank Grupp (MPE/LMU), ebenfalls ein Mitbegründer der Mission, unterstreicht: „Am MPE haben wir zusammen mit der Industrie die größten optischen Linsensysteme entwickelt und getestet, die jemals für eine wissenschaftliche Weltraummission eingesetzt wurden. Das war eine echte Herausforderung und wir sind sehr dankbar für die Unterstützung, die die Deutsche Raumfahrtagentur für diese außergewöhnliche Mission geleistet hat.“ Die Deutsche Raumfahrtagentur im DLR koordiniert die ESA-Beiträge und stellt darüber hinaus aus dem Nationalen Raumfahrtprogramm Fördermittel in Höhe von 60 Millionen Euro für die beteiligten deutschen Forschungsinstitute zur Verfügung.
Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
]]>
Kontakt:
Instrument Systems GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com
]]>
1.1 Förderziel
Förderziel ist, zur Verbesserung der Patientenversorgung neue Therapien mit innovativen Medizinprodukten zu schaffen und damit zugleich die Innovationskraft von kleinen und mittleren Unternehmen (KMU) der Medizintechnik zu stärken.
In der medizinischen Versorgungskette ist die Therapie zentraler Bestandteil. Dieser entscheidende Behandlungsschritt soll neben der optimalen Versorgung eines Leidens auch eine Verringerung von Folgeschäden, eine schnelle Heilung und Reduzierung zukünftiger Einschränkungen für ein selbstbestimmtes Leben ermöglichen.
Diese Förderziele entsprechen den Zielsetzungen des Fachprogramms Medizintechnik, mit dem das Bundesministerium für Bildung und Forschung (BMBF) unter der Maßgabe „Patientenversorgung verbessern, Innovationskraft stärken“ Forschung und Entwicklung (FuE) zu innovativer Medizintechnik unterstützt.
Das Fachprogramm leitet sich aus den zentralen Handlungsempfehlungen des Nationalen Strategieprozesses „Innovationen in der Medizintechnik“ ab und ist in die Zukunftsstrategie Forschung und Innovation sowie in das Rahmenprogramm Gesundheitsforschung der Bundesregierung eingebettet. Die vorliegende Förderrichtlinie setzt einen am Bedarf orientierten Themenschwerpunkt aus dem Fachprogramm Medizintechnik, Handlungsfeld „Patientennutzen“, um.
1.2 Zuwendungszweck
Zweck der Förderrichtlinie ist die Förderung von FuE zu neuen und möglichst schonenden Therapieverfahren mit Medizinprodukten im Rahmen von Verbundvorhaben mehrerer Partner aus Industrie, Wissenschaft, Klinik und Versorgung. Durch die Zusammenarbeit von Unternehmen, Forschungseinrichtungen und klinischen Anwendern soll sowohl die fachliche Expertise gebündelt als auch ein zügiger Transfer wissenschaftlicher Erkenntnisse in die breite Gesundheitsversorgung gewährleistet werden.
Die Ergebnisse des geförderten Vorhabens dürfen nur in der Bundesrepublik Deutschland oder dem EWR und der Schweiz genutzt werden.
1.3 Rechtsgrundlagen
Der Bund gewährt die Zuwendungen nach Maßgabe dieser Förderrichtlinie, der §§ 23 und 44 der Bundeshaushaltsordnung (BHO) und den dazu erlassenen Verwaltungsvorschriften sowie der „Richtlinien für Zuwendungsanträge auf Ausgabenbasis (AZA/AZAP/AZV)“ und/oder der „Richtlinien für Zuwendungsanträge auf Kostenbasis von Unternehmen der gewerblichen Wirtschaft (AZK)“ des BMBF. Ein Anspruch auf Gewährung der Zuwendung besteht nicht. Vielmehr entscheidet die Bewilligungsbehörde aufgrund ihres pflichtgemäßen Ermessens im Rahmen der verfügbaren Haushaltsmittel.
Nach dieser Förderrichtlinie werden staatliche Beihilfen auf der Grundlage von Artikel 25 Absatz 2 Buchstabe a bis d der Allgemeinen Gruppenfreistellungsverordnung (AGVO) der EU-Kommission gewährt. Die Förderung erfolgt unter Beachtung der in Kapitel I AGVO festgelegten Gemeinsamen Bestimmungen, insbesondere unter Berücksichtigung der in Artikel 2 der Verordnung aufgeführten Begriffsbestimmungen (vgl. hierzu die Anlage zu beihilferechtlichen Vorgaben für die Förderrichtlinie).
2 Gegenstand der Förderung
Gegenstand der Förderung sind industriegeführte, risikoreiche und vorwettbewerbliche FuE-Vorhaben in Form von Verbundprojekten, in denen die Erarbeitung von neuen, marktfähigen medizintechnischen Therapielösungen angestrebt wird. Förderprojekte sollen einen belegbaren medizinischen Bedarf adressieren sowie einen erheblichen Fortschritt der therapeutischen Versorgung zum Ziel haben.
Folgende Themenfelder liegen im Fokus der Förderung:
Die Themenfelder sind beispielhaft und nicht als vollständig anzusehen. Es können auch Projekte in nicht explizit genannten Anwendungsbereichen gefördert werden, solange die Lösungsansätze einen signifikanten Beitrag zu neuartigen oder schonenden Therapieverfahren leisten.
Weitere Aspekte aus der Versorgungskette können beteiligt sein, jedoch nicht als zentrale Projektinhalte und ausschließlich in Verbindung mit der neuen Therapieoption (zum Beispiel erforderliche begleitende Diagnostik).
Medizintechnische Lösungen im Kontext dieser Fördermaßnahme sind Versorgungslösungen, die in der Regel ein Medizinprodukt als zentrales Element beinhalten. Unter den Begriff „Medizinprodukt“ fallen im Sinne dieser Bekanntmachung alle Produkte, die gemäß dem europäischen Rechtsrahmen für Medizinprodukte in Artikel 2 Nummer 1 der Verordnung (EU) 745/2017 (MDR) als solche definiert sind. Die medizintechnischen Lösungen sollen vorrangig den ersten Gesundheitsmarkt adressieren. Bei Einreichung einer Projektskizze, von Förderanträgen und im Projektverlauf sind die Absichten zum Inverkehrbringen eines Medizinprodukts im Rahmen eines Verwertungsplans darzustellen. Die vorliegende Förderrichtlinie sowie die Ergebnisse der Förderprojekte werden im Rahmen der Evaluationen des Fachprogramms Medizintechnik, unter anderem anhand der definierten programmatischen Erfolgskriterien, bewertet.
Von der Förderung ausgeschlossen sind reine Softwarelösungen sowie die ausschließliche Entwicklung von Apps (digitale Medizinprodukte). Interessierte werden gebeten, sich diesbezüglich über die Fördermöglichkeiten der Fördermaßnahme „KMU-innovativ: Medizintechnik“, Richtlinie vom 27. Juli 2018 (BAnz AT 19.09.2018 B4), zu informieren.
Gegenstand der Förderung können neben wissenschaftlich-technologischen Fragestellungen auch präklinische Untersuchungen sowie frühe klinische Machbarkeitsstudien sein. Letztere sollen dazu geeignet sein, das Designkonzept eines in Entwicklung befindlichen Medizinprodukts zu evaluieren, die notwendigen Prozesse für das Medizinprodukt im Anschluss an die geförderte FuE-Phase anzupassen oder notwendige Änderungen des Medizinprodukts bzw. des bezüglichen Untersuchungs- und Behandlungsverfahrens bei Verwendung des Medizinprodukts zu identifizieren.
Frühe Machbarkeitsstudien an Patienten oder Probanden setzen die notwendigen behördlichen Genehmigungen voraus und sind vor dem Hintergrund der sparsamen Mittelverwendung auf den wissenschaftlich begründeten und notwendigen Umfang zu beschränken sowie nur zulässig, sofern die Ergebnisse nicht im Rahmen geeigneter präklinischer Untersuchungen erarbeitet werden können.
Klinische Prüfungen im Rahmen der klinischen Bewertung als zentraler Bestandteil des Konformitätsbewertungsverfahrens sind nicht Gegenstand der Förderung. Interessierte werden gebeten, sich diesbezüglich über die Fördermöglichkeiten der Fördermaßnahme „Medizintechnische Lösungen in die Patientenversorgung überführen − Klinische Evidenz ohne Verzögerung belegen“, Richtlinie vom 24. April 2018 (BAnz AT 17.07.2018 B2), die durch die Richtlinie vom 1. Februar 2021 (BAnz AT 03.03.2021 B6) geändert worden ist, zu informieren; die Einreichung einer Projektskizze ist jederzeit möglich.
3 Zuwendungsempfänger
Antragsberechtigt sind Unternehmen der gewerblichen Wirtschaft sowie Hochschulen, forschende Kliniken und Forschungseinrichtungen. Zum Zeitpunkt der Auszahlung einer gewährten Zuwendung wird das Vorhandensein einer Betriebsstätte oder Niederlassung (Unternehmen) bzw. einer sonstigen Einrichtung, die der nichtwirtschaftlichen Tätigkeit des Zuwendungsempfängers dient (Hochschule, forschende Klinik oder Forschungseinrichtung), in Deutschland verlangt.
Die Beteiligung von KMU wird ausdrücklich unterstützt und bei der Projektbegutachtung berücksichtigt.
„KMU“ im Sinne dieser Förderrichtlinie sind Unternehmen, die die Voraussetzungen der KMU-Definition der EU erfüllen. Der Antragsteller erklärt gegenüber der Bewilligungsbehörde seine Einstufung gemäß Anhang I der AGVO bzw. KMU-Empfehlung der Kommission im Rahmen des schriftlichen Antrags.
Forschungseinrichtungen, die von Bund und/oder Ländern grundfinanziert werden, können neben ihrer institutionellen Förderung nur unter bestimmten Voraussetzungen eine Projektförderung für ihre zusätzlichen projektbedingten Ausgaben beziehungsweise Kosten bewilligt bekommen.
Zu den Bedingungen, wann eine staatliche Beihilfe vorliegt/nicht vorliegt, und in welchem Umfang beihilfefrei gefördert werden kann, siehe FuEuI-Unionsrahmen.
Die vollständige Richtlinie finden Sie hier.
In der ersten Verfahrensstufe sind dem beauftragten Projektträger beurteilungsfähige Projektskizzen elektronisch über das Internetportal https://foerderportal.bund.de/easyonline einzureichen. Bei Verbundprojekten sind die Projektskizzen in Abstimmung mit dem vorgesehenen Verbundkoordinator vorzulegen.
Die Vorlagefrist endet am 31. August 2023.
]]>Quasare gehören zu den hellsten und am weitesten entfernten Objekten im bekannten Universum; sie werden durch den Einfall von Gas in ein supermassereiches Schwarzes Loch angetrieben. Diese aktiven galaktischen Kerne (AGN) mit sehr hoher Leuchtkraft senden große Mengen an elektromagnetischer Strahlung aus, die im Radio-, Infrarot-, sichtbaren, UV- und Röntgenbereich beobachtet werden kann. J1144 wurde erstmals im Jahr 2022 vom SkyMapper Southern Survey (SMSS) im sichtbaren Wellenlängenbereich beobachtet.
Für diese Studie kombinierten die Forscher Beobachtungen von mehreren Observatorien in der Erdumlaufbahn: das eROSITA-Instrument an Bord des Spectrum-Roentgen-Gamma (SRG) Observatoriums, das ESA XMM-Newton Observatorium, das Nuclear Spectroscopic Telescope Array (NuSTAR) der NASA und das Neil Gehrels Swift Observatorium der NASA. eROSITA entdeckte die Quelle während der ersten fünf Himmelsdurchmusterungen zwischen 2020 und 2022. „eROSITA ist nicht nur ein fantastisches Instrument, um solch seltene helle Quasare zu entdecken, sondern auch, um ihre Variabilität durch das wiederholte Scannen ihrer Röntgenemission alle sechs Monate zu überwachen“, sagt Autorin Zsofi Igo. „Dies wird entscheidend dazu beitragen, unser Wissen über die Physik der Akkretion zu erweitern.“
Das Team nutzte die Daten von eROSITA und den anderen Observatorien, um die Temperatur der von dem Quasar ausgesandten Röntgenstrahlung zu messen. Sie fanden heraus, dass diese Temperatur etwa 350 Millionen Kelvin beträgt, mehr als das 60.000-fache der Temperatur an der Oberfläche der Sonne. Zudem zeigte sich, dass die Masse des schwarzen Lochs im Zentrum des Quasars etwa das 10-Milliardenfache der Masse der Sonne beträgt und dass die Wachstumsrate in der Größenordnung von 100 Sonnenmassen pro Jahr liegt.
Weitere Informationen ergaben sich aus der Variabilität der Quelle: eROSITA stellte hohe Abweichungen über ein Jahr hinweg fest, ohne dass sich die Energieverteilung wesentlich änderte. Die Intensität des Röntgenlichts schwankte auch auf einer Zeitskala von nur wenigen Tagen, was bei Quasaren mit so großen Schwarzen Löchern wie dem in J1144 normalerweise nicht der Fall ist. Die Beobachtungen zeigten zudem, dass ein Teil des Gases vom Schwarzen Loch verschluckt wird, während ein anderer Teil in Form von extrem starken Winden ausgestoßen wird, die große Mengen an Energie in die Wirtsgalaxie transferieren.
„Ähnliche Quasare werden normalerweise in viel größeren Entfernungen gefunden, so dass sie viel schwächer erscheinen, und wir sehen sie in ihrem Zustand, als das Universum nur 2-3 Milliarden Jahre alt war“, sagt Dr. Kammoun, Hauptautor der Studie. „J1144 ist eine sehr seltene Quelle, da sie so hell und viel näher an der Erde ist, was uns einen einzigartigen Einblick in das Erscheinungsbild solch starker Quasare ermöglicht.“
Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
]]>
Nach der Begrüßung folgten drei Keynote-Vorträge: Dr. Jonas Herbst, Sill Optics GmbH, gab Einblicke in die standardisierte Toleranzanalyse und Herstellung kundenspezifischer Objekte für anspruchsvolle Anwendungen. Anschließend stellte Dr. Thomas Wisspeintner, MICRO-EPSILON MESSTECHNIK GmbH & Co. KG, innovative Sensorik-Anwendungen für mehr Präzision bei optischen Systemen vor. Dr. Felix Grasbon, Grättinger Möhring von Poschinger Patentanwälte Partnerschaft mbB, griff die Patentsituation in der Optikfertigung und Sensorik im internationalen Vergleich auf.
Nach dem Auftakt starteten die Parallel-Sessions „Optikfertigung“ und „Robuste Sensorik“, moderiert von Dr. Horst Sickinger, Geschäftsführer bayern photonics, und Anke Siegmeier, Geschäftsführerin OptoNet. Die Themen in der Session „Optikfertigung“ reichten von der Lokalisierung in der Additiven Fertigung hin zu Asphären in der Produktion und Messtechnik.
In der Session „Robuste Sensorik“ widmeten sich die Referentinnen und Referenten u.a. den Themen 3D-Mikrofertigung und bildgebender Messtechnik für die Klima- und Umweltforschung.
Eine Podiumsdiskussion zum Thema „Innovations- und Start-up-Förderung“ rundete den fachlichen Teil des ersten Tages ab. Dr. Andreas Ehrhardt und Nathalie Hoppe, Marketing bei Photonics BW, luden Sabine Maass, Referatsleiterin im BMWK, Dr. Felix Grasbon, Prof. Dr. Harald Riegel, Rektor der Hochschule Aalen, Christoph Sieber, CEO Sill Optics, und Dr. Thomas Wisspeintner ein, um das Topthema „Innovation und Start-up-Förderung“ von unterschiedlichen Seiten zu beleuchten und neue Wege aufzuzeigen.
Im Mittelpunkt der Diskussion standen Innovationspotenziale, aber auch Innovationshemmnisse, Möglichkeiten zur Innovationsförderung in der Photonik-Branche und die Verwertung von Forschungsergebnissen sowie die Start-up-Förderung über verschiedene Möglichkeiten. Darüber hinaus wurde die Bedeutung von IP-Bewusstsein und Notwendigkeit von Patentanmeldungen deutlich sowie Empfehlungen für den Schutz geistigen Eigentums gegeben. Auch die Potenziale von Künstlicher Intelligenz (KI) zur Beschleunigung von Innovationsprozessen (Smart Innovation) wurden in der Runde erörtert. Die Teilnehmenden waren sich einig, dass KI zahlreiche Nutzenpotenziale bietet und somit Unternehmen und Forschungseinrichtungen beim Innovationsmanagement unterstützen kann. Gleichzeitig existieren einige Herausforderungen, wie bspw. Datenschutz, Copyright und Bias durch fehlerhafte Daten oder voreingenommene KI-Algorithmen.
OptecNet Deutschland und die regionalen Innovationsnetze selbst haben einen zentralen Schwerpunkt in der Innovationsförderung. Andreas Ehrhardt nannte die Expertenkreise zu unterschiedlichen Fachthemen, Messeauftritte und Delegationsreisen, Förderprojekte und die politische Informationsarbeit als wichtige Instrumente der Arbeit des Dachverbands. OptecNet Deutschland ist mit rund 600 Mitgliedern der mitgliederstärkste Photonikverbund Deutschlands und vereint neun regionale Innovationsnetze Optische Technologien und Quantentechnologien.
Als Call to Action bzw. Wünsche wurden eine verstärkte Forschungsförderung für Unternehmen, Forschungs- und Bildungseinrichtungen in der Photonik-Branche genannt. Außerdem bremst die Wirtschaft zunehmend eine unverhältnismäßige Bürokratie sowie vielfache Überregulierung. Hier besteht dringend Handlungsbedarf seitens der Politik.
Eine Abendveranstaltung in entspannter Atmosphäre und Möglichkeiten zum persönlichen Austausch rundete den ersten Veranstaltungstag ab.
Begonnen wurde der nächste Tag mit Grußworten von Sabine Maass, die die bei der Podiumsdiskussion angeregten Handlungsempfehlungen und Wünsche aufgreifen und weitertragen möchte. Anschließend stellte Werner Kruesi, Swissmem Photonics, das Photonik-Ökosystem in der Schweiz sowie die Kernaktivitäten des Schweizer Verbands für den Bereich Photonik vor. Dazu gehört auch die Delegationsreise vom 6. – 8. November 2023 in die Schweiz, zu der die Mitglieder der in OptecNet Deutschland zusammen geschlossenen Innovationsnetze herzlich eingeladen sind.
Prof. Dr. Harald Riegel stellte das LaserApplikationsZentrum (LAZ) und das Zentrum für Optische Technologien (ZOT) der Hochschule Aalen sowie drei Schwerpunktfelder im Bereich Nachhaltigkeit und Ressourceneffizienz basierend auf innovativen photonischen Fertigungsprozessen vor. Prof. Dr. Andreas Reiserer, TU München, gab anschließend Einblicke in die Vorteile, den Status Quo und die Herausforderungen von Quantennetzwerken. Dr. Felix Grasbon erläuterte die Patentsituation in der Lasertechnik und Quantenkommunikation und ging dabei auf verschiedene Regionen weltweit und Schlüsseltechnologien ein.
Anschließend moderierte Dr. Andreas Ehrhardt die Session „Lasereinsatz für die Nachhaltigkeit“ mit spannenden Einblicken in die Lasermaterialbearbeitung für die E-Mobilität, Laser in der Additiven Fertigung und der Anwendung für nachhaltige Textilien.
Daniel Stadler, NMWP, moderierte die Session Quantenkommunikation, die den Fokus auf Quantenverschlüsselung für die Cybersicherheit, insbesondere in Hochsicherheitsbereichen, und Quantentechnologie in der Raumfahrt legte.
Abgerundet wurde die Jahrestagung durch den unterhaltsamen Schlussvortrag von Jonas Betzendahl zum Thema „Risiken und Nebenwirkungen von maschinellem Lernen“.
Wir bedanken uns herzlich bei unseren Sponsoren, Ausstellern, Speakern und bei allen Teilnehmenden für die gelungene Jahrestagung!
Herzlichen Dank an unsere Sponsoren:
Goldsponsor: Sill Optics GmbH
Silbersponsoren: Hofbauer Optik Mess- und Prüftechnik, Infraserv Vakuumservice GmbH, Laser Components Germany GmbH, Messe München GmbH, MICRO-EPSILON MESSTECHNIK GmbH & Co. KG, SUSS MICROOPTICS SA
Bronzesponsoren: Bayerisches Laserzentrum GmbH, Qioptiq Photonics GmbH & Co. KG - ein Unternehmen von Excelitas Technologies, Gigahertz Optik GmbH, Laser 2000 GmbH, MPS Micro Precision Systems AG, TRUMPF Laser- und Systemtechnik GmbH
]]>In many ways, photonics and photonic technologies serve as a foundation for our modern society. As the science of employing light as a tool for the benefit of humans, photonics drive innovations in an increasing number of fields, ranging from optical communication, lighting, displays and imaging to production technologies, life science, health and environmental science.
Fraunhofer Photonica will take place from 17.09. to 29.09.2023. Young scientists will visit five research institutes in four cities, in a two-week trip Freiburg – Aachen – Dresden – Jena. Travel and accommodation cost will be covered. At each site, a topical scientific program with hands-on practical elements will provide insights into and different perspectives on photonics.
Your benefits:
For more information and application, please visit https://www.photonica.fraunhofer.de/
]]>www.applied-photonics-award.de
]]>
Kontakt:
Instrument Systems GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com
Das entspricht einem Wert von 56 Milliarden Euro, ein Rekordumsatz für die Branche. Getragen
wurde das Ergebnis dabei gleichermaßen von einem starken Inlands- und Auslandsgeschäft mit einem Plus von jeweils rund 18 Prozent. Vor dem Hintergrund der stark gestiegenen Preise relativiert sich das Ergebnis etwas, kann aber dennoch als Erfolg gewertet werden. Als Treiber neuer innovativer Bereiche innerhalb ihrer Anwendungsmärkte profitiert die Photonik von deren überdurchschnittlich hohen Wachstumsraten.
Ein weiterer Grund für den starken Anstieg war das erneut positive US-Geschäft. Die deutschen Photonikexporte in das zweitwichtigste Zielland der Branche legten 2022 um rund 23 Prozent zu. Die Firmen profitierten dabei unter anderen vom schwachen Euro und den US-Konjunkturprogrammen. Die große Bedeutung des internationalen Geschäfts zeigt sich in der unverändert hohen Exportquote von 73 Prozent: 40,7 Milliarden Euro Umsatz wurden im Ausland erzielt. Ausgehend von den
amtlichen Außenhandelszahlen ist China das mit Abstand wichtigste Zielland der deutschen Photonik, gefolgt von den USA und Japan.
Aufgrund der positiven Umsatzentwicklung stieg die Zahl der Beschäftigten zum zweiten Mal in Folge um neun Prozent auf jetzt 191.800 Mitarbeiterinnen und Mitarbeitern. „Diese erfreuliche Entwicklung stellt für viele Unternehmen inzwischen eine enorme Herausforderung dar, da die Wachstumspotenziale mangels ausreichender Fachkräfte schon heute nicht mehr voll erschlossen werden können“, betont Dr. Bernhard Ohnesorge, Vorsitzender der Photonik bei SPECTARIS und Geschäftsführer der Carl Zeiss Jena GmbH.
Weiterhin steht die Bewältigung von Lieferkettenschwierigkeiten, insbesondere im Halbleiterbereich, auf der Tagesordnung der Unternehmen ganz oben. Mit einer kurzfristigen Entspannung der Situation wird dabei nicht gerechnet. Auch die stark gestiegenen Kosten belasten die Branche. Ohnesorge: „Auf das Jahr 2023 schauen die deutschen Hersteller vergleichsweise verhalten optimistisch und rechnen mit einem erneuten, aber etwas schwächerem Plus in der Größenordnung von etwa zehn Prozent.“
Ungeachtet der zur Zeit vorhandenen allgemeinen konjunkturellen Unsicherheiten ist das Wachstumspotenzial der Photonik mit ihrer überdurchschnittlich hohen FuE-Quote von fast zehn Prozent weiterhin enorm. Alleine für Quantentechnologien wird bis 2030 mit einem jährlichen Gesamtumsatz-Wachstum von 20 Prozent gerechnet. Weitere Anwendungsfelder der Photonik
laufen auf Hochtouren, etwa die Medizintechnik, die autonome Mobilität oder der Bereich Halbleiterausrüstung. Andere stehen am Beginn ihrer Erschließung, wie zum Beispiel Precision Farming im Rahmen der Digitalisierung der Landwirtschaft. Laut einer Studie von SPECTARIS und der Messe München wird sich Precision Farming immer stärker zu einem wesentlichen Eckpfeiler einer nachhaltigen Ernährung der Weltbevölkerung entwickeln. Dementsprechend wird erwartet, dass der Photonik-Umsatz in diesem noch jungen Bereich alleine in den kommenden Jahren um jährlich etwa 15 Prozent wachsen wird.
]]>
Kontakt:
Instrument Systems GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com
Bereits seit 2020 besteht eine enge Zusammenarbeit zwischen OptecNet Deutschland und SPECTARIS unter der neuen gemeinsamen Dachmarke PHOTONICS GERMANY – PHOTONIK DEUTSCHLAND. Ziel ist ein gemeinsamer Auftritt der deutschen Photonik-Branche auf nationaler und internationaler Ebene. Die Bedeutung der Photonik-Branche wird durch gemeinsame Aktionen in der Wirtschafts- und Forschungspolitik noch stärker sichtbar gemacht.
Dr. Andreas Ehrhardt, Vorstand und Sprecher von OptecNet Deutschland, ergänzt: „Im vergangenen Jahr haben SPECTARIS und OptecNet Deutschland unter dem Dach PHOTONICS GERMANY - PHOTONIK DEUSCHLAND ein Positionspapier zur Photonik in Deutschland, verbunden mit der Forderung nach einer neuen Photonik-Förderung, erstellt und dem Bundesforschungsministerium überreicht. Mit der neuen Kooperationsvereinbarung wollen wir die erfolgreiche Zusammenarbeit nicht nur verstetigen, sondern insbesondere den anhaltenden Fachkräftebedarf der Hightech-Branche Photonik und Quantentechnologien aufgreifen und entsprechende Aktivitäten und Maßnahmen starten.“
PHOTONICS GERMANY – PHOTONIK DEUTSCHLAND ist die Allianz der beiden Photonik-Verbände OptecNet Deutschland und SPECTARIS und repräsentiert rund 700 Unternehmen und Forschungs-/Bildungseinrichtungen der Photonik-Branche Deutschlands.
Mehr unter: www.photonics-germany.de
Presseinformation, Berlin, 02.02.2023
]]>
Die Übernahme von Gray Optics passt in die Strategie von FISBA einzigartige optische Lösungen zur Verbesserung von Gesundheit, Produktivität und Sicherheit anzubieten. Durch den Kauf von Gray Optics stärkt FISBA seine Kompetenz im Bereich Technik und Entwicklung in Nordamerika. Dies unterstützt die Ziele von FISBA und bietet den Kunden hochqualifizierte lokale Entwicklungsressourcen, welche die Entfernung, den Zeitaufwand und die kulturellen Auswirkungen verringern.
«Wir gehen davon aus, dass sich diese Übernahme unmittelbar auf unsere Kunden auswirken wird, da wir vertikal integrierte Produktentwicklungs- und Fertigungskapazitäten (einschliesslich AS9100- und ISO13485-Produktionsstätten) sowie fortschrittliche Produktionstechnologien anbieten, um Lösungen von höchster Qualität und Leistung zu produzieren,» sagt Wallace Latimer, Präsident von FISBA North America.
«Die Kombination der Fähigkeiten von FISBA und Gray Optics, sowie die bestehenden Synergien zwischen den Unternehmen, bieten unseren Kunden einen deutlichen Mehrwert. Diese Übernahme vervollständigt die Produktentwicklungs- und Fertigungskapazitäten, die wir in den letzten 5 Jahren in den USA aufgebaut haben. Ich freue mich auf die Zukunft unseres Teams bei Gray Optics und auf den gemeinsamen Erfolg», so Dan Gray, Gründer und Präsident von Gray Optics.
Über FISBA
Die FISBA Gruppe verfügt über eine hundertprozentige Tochtergesellschaft in Nordamerika, welche sich auf die Entwicklung und Unterstützung nordamerikanischer Kunden mit der einzigartigen Kombination aus Engineering und Volumenproduktion von mikrooptischen Baugruppen und Modulen konzentriert. FISBA ist einer der weltweit führenden Anbieter in der Optikindustrie und steht seit 1957 für Exzellenz vom optischen Design und System-Engineering bis zur hochpräzisen Serienfertigung und fortschrittlichen optischen Beschichtung. Das Unternehmen fertigt Mikrolinsen bis zu 0,3 mm, komplexe Planoptiken, präzise optische Baugruppen, fortschrittliche optische Systeme und kompakte Lasermodule – alles aus einer Hand. FISBA konzentriert sich auf Lösungen für die Bereiche Life Sciences, industrielle Anwendungen sowie Luft- und Raumfahrt und Verteidigung. FISBA wirkt von seinem Hauptsitz in der Schweiz und Tochtergesellschaften in Deutschland, den USA und China aus. Das Unternehmen befindet sich in Privatbesitz.
Über Gray Optics
Das 2018 gegründete Unternehmen Gray Optics mit Sitz in Portland, Maine ist führend in der Entwicklung optischer Präzisionssysteme und in der frühen Phase der Produktentwicklung für biomedizinische und industrielle Anwendungen. Das Team besteht aus hochqualifizierten Ingenieuren, Programmmanagern und Technikern mit jahrelanger Erfahrung in der Produktentwicklung. Gray Optics bietet seinen Kunden erstklassige Design- und Produktlösungen. www.grayoptics.com
Medien Kontakt
Silke Nielsen
Marketing and Communications
silke.nielsen(at)fisba.com
www.fisba.com | www.fisba.us
Mit der Erweiterung des Mitgliederkreises um das Wetzlar Network e.V. und NMWP e.V. repräsentiert OptecNet Deutschland rund 600 Unternehmen und Forschungs-/Bildungseinrichtungen. OptecNet Deutschland deckt somit das gesamte Bundesgebiet ab und kann seine Position als mitgliederstärkster Photonik-Zusammenschluss in Deutschland weiter ausbauen und ergänzen.
OptecNet Deutschland lädt alle Unternehmen und Forschungseinrichtungen der Branche zu einem engen Zusammenwirken innerhalb des Verbands und den regionalen Innovationsnetzen ein. Gerne vermitteln wir Ihnen auch den Kontakt zu Ihrem regionalen Netzwerk.
Weitere Informationen unter www.optecnet.de
]]>Die Entwicklung eigener Lasermesstechnik
Während sie die ersten Laser aus den USA in Deutschland vertreiben, beginnt Polytec ab 1971 damit, eigene Lasermesstechnik, zunächst das erste FIR-Spektrometer, zu entwickeln und zu produzieren. Wieder trifft Heinz G. Lossau mit seiner Entscheidung den Nerv und Bedarf seiner Zeit. Das FIR 30 ist für viele Jahre das einzige FIR-Spektrometer auf dem Weltmarkt. Es wird ein riesiger Erfolg und bald liefert Polytec Geräte auf alle Kontinente.
In den folgenden Jahrzehnten folgen zahlreiche weitere Eigenentwicklungen und Heinz G. Lossau baut mit Polytec die Bereiche der Längen- und Geschwindigkeitsmessung in Produktionsanlagen, die NIR-Spektroskopie für Prozessanalytik, als Handelsvertretung die industrielle Bildverarbeitung und optische Systeme und mit der Tochterfirma PT die industriellen Klebstoffe auf.
Mit optischer Schwingungsmesstechnik zum Weltmarktführer
Immer wieder ist der Ausnahmeunternehmer auf der Suche nach neuartigen messtechnischen Lösungen und Geschäftsfeldern, nach neuen Herausforderungen und Zielen – Heinz G. Lossau ist einfach niemals stehengeblieben. In den 1990ern beweist er erneut sein feines Gespür für technologische Trends. Begeistert von der Technologie faseroptischer Sensoren beschließt er, die dafür geeigneten Geräte für die optische berührungslose Messung mechanischer Bewegungen, speziell für Schwingungen, herzustellen: Laservibrometer.
Damit setzt er einen weiteren entscheidenden Meilenstein für Polytec. Die Vibrometrie wird nach und nach zur größten und erfolgreichsten Sparte des Waldbronner Unternehmens – heute ist Polytec unangefochtener Weltmarktführer in der optischen Schwingungsmesstechnik.
Heinz G. Lossaus Vermächtnis
2005 stirbt Heinz G. Lossau im Alter von 82 Jahren – und mit ihm endet ein Stück deutscher Erfolgsgeschichte. Polytec verliert einen der herausragendsten Pioniere der Lasertechnik, einen umtriebigen, couragierten Unternehmer und eine sehr geschätzte und respektierte Persönlichkeit. „Heinz Lossau ist sehr in Erinnerung geblieben als ein ungemein energiegeladener und mutiger Unternehmer, der viele Impulse bei Polytec vorangetrieben hat, die noch heute die Grundlage unserer Tätigkeit darstellen“, erklärt Dr. Dietmar Gnaß, seit 2014 Geschäftsführer bei Polytec. „Er vereinbarte hervorragend die wirtschaftliche und technische Weitsicht im High-Tech-Umfeld und sah früh die internationale Ausrichtung als Grundlage unseres Geschäftserfolges. Er hat stetig das Neue gesucht und feierte immer wieder große Erfolge mit seinen innovativen Projekten.“
Im Sinne von Heinz G. Lossau wird die Geschichte von Polytec seither weitergeschrieben. Heute blickt das Unternehmen auf mehr als 50 Jahre zurück, beschäftigt fast 500 Mitarbeiterinnen und Mitarbeiter weltweit und unterhält Niederlassungen in den USA, in England, Frankreich, Japan, Singapur und China sowie ein weltweites Netzwerk an Vertriebspartnern.
Presse-Information von Polytec
Zuständig bei Rückfragen
Christina Schmid
Tel. 07243-604-3680
Die Pressemeldung und nähere Informationen zu Polytec finden Sie hier.
]]>Nähere Informationen erhalten Sie hier.
]]>Vom 12.01.2023
Die forschungsintensive Mikroelektronik und ihre Anwendungen sind branchenübergreifend Treiber von Fortschritt, Wettbewerb und Innovation. Basis dafür sind Wissen und Ergebnisse aus der erkenntnisorientierten Forschung, die häufig großes Potenzial für neue Anwendungen und Technologien in der Mikroelektronik haben. Dazu fördert das Bundesministerium für Bildung und Forschung (BMBF) derzeit auf Basis der ForMikro-Richtlinie 14 anspruchsvolle Forschungskooperationen, in denen ein in der Entwicklung frühzeitiger Austausch zwischen Hochschulen, Forschungseinrichtungen sowie Unternehmen, insbesondere kleine und mittlere Unternehmen (KMU) und Start-ups, stattfindet. Die erfolgreiche Zwischenevaluation aller Verbünde im Rahmen der Fachtagung „Mikroelektronik-Forschung in Deutschland: von den Grundlagen zur Anwendung“ zeigte erste Erfolge und eine breite positive Resonanz aus der Fachcommunity. Damit hat sich diese Maßnahme als Instrument zur Förderung der engen Kooperation zwischen Wissenschaft, Wirtschaft und Gesellschaft in Deutschland bewährt und erzeugt wichtige Impulse zur Stärkung der Mikroelektronik in Deutschland.
Aufgrund dessen soll die ForMikro-Maßnahme als Förderinstrument zum beschleunigten Transfer von Ergebnissen der grundlagennahen Forschung in die Kommerzialisierung neu aufgelegt werden. So sollen schon in einer frühen Forschungs- und Entwicklungsphase erste Verwertungspotenziale identifiziert und bereits während der Erforschung geschärft werden. Damit sollen Voraussetzungen geschaffen werden, um die Leistungsfähigkeit, Zuverlässigkeit, Nachhaltigkeit, Vertrauenswürdigkeit und Sicherheit von Komponenten und Systemen zu steigern. Zudem sollen der wissenschaftliche Austausch und die Kooperation der beteiligten Partner durch eine Vernetzung untereinander als Teil dieser Richtlinie gestärkt werden.
Vor diesem Hintergrund beabsichtigt das BMBF, Forschungsprojekte zur Entwicklung neuer Elektronikkomponenten und -systeme zu fördern, die richtungsweisende Potenziale und Erfolge für die Mikroelektronik in Deutschland versprechen. Um die Innovationspipeline neuer Mikroelektronik gefüllt zu halten und neues Wissen in den Natur- und den Ingenieurswissenschaften für die Mikroelektronik der nächsten Generation zu erschließen, werden auf Basis dieser Richtlinie Hochschulen und außeruniversitäre Forschungseinrichtungen gefördert. Dabei stehen Themen im Fokus, die zwar noch nicht industriell erforscht werden, für die jedoch ein nachgewiesenes Interesse aus der Industrie vorliegt. Die Brücke zwischen Grundlagenforschung und industriegeführter Forschung in der Mikroelektronik wird somit ausgebaut. Darüber hinaus wird durch die Forschung an zukunftsweisenden Themen der Mikroelektronik ein Beitrag zur Stärkung der Fachkräftebasis in dieser Branche geleistet.
Diese Förderrichtlinie ist Teil des Rahmenprogramms „Mikroelektronik. Vertrauenswürdig und nachhaltig. Für Deutschland und Europa.“ und leistet einen wichtigen Beitrag zur „Zukunftsstrategie Forschung und Innovation“ der Bundesregierung.
1 Förderziel, Zuwendungszweck, Rechtsgrundlagen
Deutschlands Wirtschaftskraft und Wettbewerbsfähigkeit ist maßgeblich mit der Innovationsstärke der Forschungseinrichtungen und Hochschulen verknüpft. Damit die Industrie innovative Produkte, Prozesse und Dienstleistungen auf dem Markt anbieten und im internationalen Wettbewerb bestehen kann, ist ein regelmäßiger Zugang zu neusten Forschungs- und Entwicklungsergebnissen wie auch zu hochqualifizierten Fachkräften entscheidend. Starke Kooperationsstrukturen von Hochschulen und Forschungseinrichtungen mit Unternehmen führen zu einem funktionierenden Wissens- und Technologietransfer aus der Forschung in die Anwendung. Im Fokus der Förderung stehen eine offene Innovationskultur und die Wertschöpfungskette für die Elektronik der Zukunft in Deutschland, um die technologische Souveränität und internationale Wettbewerbsfähigkeit des Industriestandorts Deutschlands und Europas zu stärken.
1.1 Förderziel
Die Ziele dieser Förderrichtlinie sind
Zur Untersuchung der Zielerreichung können unter anderem folgende Indikatoren herangezogen werden:
Zur Erfassung der Zielerreichung sollen oben genannte Indikatoren von den Antragsstellern mit Blick auf ihre Messbarkeit ausformuliert werden. Dies wird bei der Bewilligung festgehalten sowie zu geeigneten Zeitpunkten erhoben (gegebenenfalls auch nach Abschluss des Vorhabens).
1.2 Zuwendungszweck
Um den Transfer neuartiger Ansätze und kreativer Ideen aus der erkenntnisorientierten Forschung in neue Technologien und Anwendungen der Mikroelektronik zu beschleunigen, werden Hochschulen und außeruniversitäre Forschungseinrichtungen in vorwettbewerblichen wissenschaftlichen Verbundvorhaben gefördert. In den geförderten Vorhaben soll ein konkretes Nutzungspotenzial herausgearbeitet werden und die Voraussetzung für gezielte weiterführende Innovationsprozesse, perspektivisch für eine industriegetriebene Weiterentwicklung und Verwertung, geschaffen werden. Zu diesem Zweck soll sich die Industrie in assoziierter Form an den Vorhaben beteiligen. Die Forschungsarbeiten dienen dazu, insbesondere die beteiligten Unternehmenspartner zu befähigen, das Potenzial und Risiko für eine Überführung in die wirtschaftliche Nutzung bewerten zu können.
Die Ergebnisse des geförderten Vorhabens dürfen nur in der Bundesrepublik Deutschland oder dem EWR und der Schweiz genutzt werden; Ausnahmen sind mit vorheriger schriftlicher Zustimmung der Bewilligungsbehörde möglich.
2 Gegenstand der Förderung
Gegenstand der Förderung sind Forschungsaufwendungen im Rahmen vorwettbewerblicher wissenschaftlicher Verbundvorhaben. Dabei steht die enge fachliche Zusammenarbeit von Forschenden aus der erkenntnis- und der anwendungsorientierten Forschung zur Überprüfung der Umsetzbarkeit grundlegender Forschungsergebnisse in eine wirtschaftliche Nutzung und Verwertung im Mittelpunkt. Weiterhin muss das Interesse von Unternehmen an den Ergebnissen in Form einer finanziellen Beteiligung und gegebenenfalls weiteren Beteiligungsformen nachgewiesen werden, wie in Nummer 4.1 erläutert.
Wesentliches Ziel der Förderung ist eine Stärkung der Innovationskraft der Forschungslandschaft sowie der beteiligten Anwendungsindustrie. Dies soll dadurch erreicht werden, dass der Transfer von grundlagenorientierten Forschungsergebnissen in die praktische Anwendung beschleunigt wird.
Es werden ausschließlich Vorhaben gefördert, die auf wesentliche Innovationen in der Mikro- und Nanoelektronik abzielen. Hierzu gehören insbesondere:
mit nachgewiesenem Interesse von Unternehmen an den Ergebnissen und potenziell großer Breitenwirksamkeit. Die genannten Themenfelder sind nicht abschließend, sollten aber die Anwendungsfelder des Rahmenprogramms der Bundesregierung für Forschung und Innovation 2021 bis 2024: „Mikroelektronik. Vertrauenswürdig und nachhaltig. Für Deutschland und Europa.“ adressieren.
Bei allen Forschungsanwendungen kommt den Querschnittsthemen Nachhaltigkeit, Vertrauenswürdigkeit sowie Standardisierung eine hohe Bedeutung zu und diese sind bei der Planung der Vorhaben zu berücksichtigen. Charakteristisch für jedes Vorhaben ist, dass die der Technologie zu Grunde liegenden naturwissenschaftlichen Phänomene bereits erforscht sind und im Rahmen des Projekts erstmals die konkrete Nutzbarkeit für die industrielle Anwendung demonstriert wird. Ziel soll sein, dass die Ergebnisse aus dem Vorhaben als Basis für anschließende Verbundforschung unter Einbeziehung von Unternehmen oder Entwicklungsarbeiten von Start-ups dienen. Der tatsächliche Nutzen, insbesondere im Vergleich zu bestehenden Technologien, ist differenziert darzulegen. Von einer Förderung ausgeschlossen sind Vorhaben ohne ausreichenden Bezug zu neuen Anwendungen und Technologien in der Mikro- und Nanoelektronik, beispielsweise in der Materialforschung, Photonik und Quantentechnologien zweiter Generation.
Die Arbeiten in den Forschungsvorhaben sollen vor allem:
Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler werden explizit zur Teilnahme ermutigt.
Gefördert werden Verbundvorhaben, die sich an konkreten industriellen Anforderungen und Anwendungen orientieren und sich durch ein hohes wissenschaftlich-technisches Risiko sowie eine große potenzielle Breitenwirksamkeit auszeichnen.
Vorhaben der reinen Grundlagenforschung ohne weiterführende anwendungsbezogene Ansätze, der reinen Softwareentwicklung sowie Einzelvorhaben sind von der Förderung ausgenommen.
Für alle Vorhaben wird empfohlen, vor dem Stichtag bereits in einer frühen Skizzenphase Kontakt mit dem zuständigen Projektträger aufzunehmen und die grundsätzliche Passfähigkeit des Vorhabens unter Berücksichtigung der Förderkriterien zu erörtern.
3 Zuwendungsempfänger
Antragsberechtigt sind Universitäten, außeruniversitäre Forschungseinrichtungen und Hochschulen mit ausgewiesener Expertise im Bereich der Mikroelektronik. Eine koordinierende Stelle ist im Verbundvorhaben von mehreren Forschungseinrichtungen und Hochschulen zu benennen. Zum Zeitpunkt der Auszahlung einer gewährten Zuwendung wird das Vorhandensein einer sonstigen Einrichtung, die der nichtwirtschaftlichen Tätigkeit des Zuwendungsempfängers dient (Forschungseinrichtung, außeruniversitäre Forschungseinrichtung, Landes- und Bundeseinrichtung), in Deutschland verlangt. Einrichtungen, die ausschließlich wirtschaftlich tätig sind, sind nicht antragsberechtigt. Übt ein und dieselbe Einrichtung sowohl wirtschaftliche als auch nichtwirtschaftliche Tätigkeiten aus, ist sie antragsberechtigt, wenn die nichtwirtschaftlichen und die wirtschaftlichen Tätigkeiten und ihre Kosten, Finanzierung und Erlöse klar voneinander getrennt werden können, sodass keine Gefahr der Quersubventionierung der wirtschaftlichen Tätigkeit besteht. Die Förderung wird ausschließlich für nichtwirtschaftliche Tätigkeiten im Sinne des Artikel 107 AEUV gewährt. Die Vorgaben des EU-Beihilfenrechts mit Verweis auf die Nummer 2.1.1 (insbesondere Randnummern 18 und 20) des Unionsrahmens für staatliche Beihilfen zur Förderung von Forschung, Entwicklung und Innovation (ABl. C 414 vom 28.10.2022, S. 1) sind zu beachten. Das Forschungsvorhaben ist in der Bundesrepublik Deutschland durchzuführen.
Das BMBF ist bestrebt, den Anteil der Hochschulen für angewandte Wissenschaften in der Forschungsförderung zu erhöhen. Hochschulen, Fachhochschulen und technische Hochschulen sind deshalb besonders aufgefordert, sich an den Vorhaben zu beteiligen.
Forschungseinrichtungen, die von Bund und/oder Ländern grundfinanziert werden, können neben ihrer institutionellen Förderung nur unter bestimmten Voraussetzungen eine Projektförderung für ihre zusätzlichen projektbedingten Ausgaben beziehungsweise Kosten bewilligt bekommen.
Zu den Bedingungen, wann eine staatliche Beihilfe vorliegt/nicht vorliegt und in welchem Umfang beihilfefrei gefördert werden kann, siehe FuEuI-Unionsrahmen.
Nach der Registrierung ist in der ersten Verfahrensstufe dem Projektträger VDI/VDE Innovation + Technik GmbH bis spätestens 27. April 2023 eine Projektskizze in deutscher Sprache und in elektronischer Form vorzulegen.
Die vollständige Richtlinie finden Sie hier.
]]>
Vom 20.12.2022
Der Förderaufruf nimmt Bezug auf Modul 3 der Rahmenbekanntmachung des Bundesministeriums für Bildung und Forschung zur Förderung von Projekten in der Forschungs- und Innovationszusammenarbeit mit Lateinamerika und der Karibik vom 19. Dezember 2022 (https://www.bmbf.de/bmbf/shareddocs/bekanntmachungen/de/2022/12/2022-12-19-Bekanntmachung-Lateinamerika.html). Die Bestimmungen dieser Rahmenbekanntmachung finden unverändert Anwendung. Da es sich um eine multilaterale Fördermaßnahme handelt, sind ergänzend auch die Kriterien des gemeinsamen EUREKA-Aufrufs zu berücksichtigen
(www.eurekanetwork.org/open-calls/globalstars-brazil-sao-paulo-2022).
Bei EUREKA handelt es sich um eine dezentrale zwischenstaatliche Organisation, die sich zum Ziel gesetzt hat, die Wettbewerbsfähigkeit und Produktivität der Industrie durch grenzüberschreitende Zusammenarbeit bei Forschung und Innovation zu erhöhen. Es ist zugleich das weltgrößte Netzwerk für diese Art der Kooperation. Mithilfe des Instruments „Globalstars“ können auch Partner außerhalb des EUREKA-Netzwerks einbezogen werden, so wie in diesem Fall die Förderorganisation FAPESP des brasilianischen Bundesstaates São Paulo.
Ziel dieses Förderaufrufs ist die Intensivierung der bilateralen und multilateralen Technologiekooperation mit Unternehmen und Forschungseinrichtungen aus dem Bundesstaat São Paulo in den Bereichen Industrie 4.0 sowie Künstliche Intelligenz (KI) in Smart Cities und dem Gesundheitssektor. Im Vordergrund steht dabei die Entwicklung von marktwirksamen Innovationen mit ziviler Anwendung, d.h. die Entstehung neuer kommerzieller Produkte, Verfahren und/oder Dienstleistungen.
Gegenstand der Förderung
Gefördert werden gemeinsame marktnahe Forschungs- und Innovationsprojekte, die in internationaler Zusammenarbeit mit Partnern aus dem Bundesstaat São Paolo in Brasilien und ggf. zusätzlich aus den EUREKA-Ländern Schweden oder Spanien durchgeführt werden und eines oder mehrere der nachfolgenden Themen adressieren:
mit folgenden Schwerpunkten:
IKT-Anwendungen im industriellen Kontext, einschließlich Innovation bei Prozessen und Produkten
Die Vorhaben sollen eine hohe Praxisrelevanz aufweisen sowie Erkenntnisse und wirtschaftlich verwertbare Forschungsergebnisse in den genannten Anwendungsfeldern erwarten lassen, die zu neuen Produkten, Verfahren und/oder Dienstleistungen führen.
Zuwendungsempfänger
Antragsberechtigt sind kleine und mittlere Unternehmen (KMU) sowie gegebenenfalls als Verbundprojektpartner Hochschulen und Forschungseinrichtungen. Zum Zeitpunkt der Auszahlung einer gewährten Zuwendung wird das Vorhandensein einer Betriebsstätte oder Niederlassung (Unternehmen) bzw. einer sonstigen Einrichtung, die der nichtwirtschaftlichen Tätigkeit des Zuwendungsempfängers dient (juristische Personen des öffentlichen oder privaten Rechts, kommunale Gebietskörperschaften), in Deutschland verlangt.
Eine schriftliche Kooperationsvereinbarung muss die Zusammenarbeit der deutschen und der internationalen Partner des Verbundprojekts regeln.
Höhe und Dauer der Zuwendung
Die Förderung erfolgt als nicht rückzahlbare Zuwendung. Die Fördersumme pro deutschem Verbundprojekt kann in der Regel bis maximal 250.000 € betragen. Mindestens 40 % der Förderung des deutschen Verbundes muss dabei auf die beteiligten KMU entfallen. Die Laufzeit der Projekte darf maximal bis zu 36 Monate betragen.
Antragsfrist für den internationalen Verbundantrag ist der 31. Januar 2023.
Die vollständige Richtlinie finden Sie hier.
]]>Menlo Systems GmbH
Am Klopferspitz 19a
82152 Martinsried
Germany
Phone: +49 89 189166 0
Fax: +49 89 189166 111
E-Mail:m.mei(at)menlosystems.com
Internet:www.menlosystems.com
]]>
1 Förderziel, Zuwendungszweck, Rechtsgrundlagen
Quantenkommunikation als Schlüsseltechnologie für die Sicherheit digitaler Infrastrukturen ist ein wichtiger Bestandteil des Forschungsrahmenprogramms „Digital. Sicher. Souverän“ der Bundesregierung zur IT-Sicherheit.
Auf Grund ihrer einzigartigen Sicherheitseigenschaften hat die Quantenkommunikation ein hohes Potential für Wirtschaft und öffentliche Nutzer. Für den großflächigen Einsatz von Quantenkommunikationstechnologien bedarf es jedoch noch gezielter Forschung und anwendungsorientierter Weiterentwicklung, um einen sicheren Einsatz zu garantieren und die Kompatibilität mit bestehender Kommunikationsinfrastruktur zu ermöglichen. Heutige Quantenkommunikationssysteme für den sogenannten Quantenschlüsselaustausch (QKD) sehen sich mit vielen Sicherheitsrisiken konfrontiert, denen auch konventionelle Kommunikations- und IT-Sicherheitstechnologien ausgesetzt sind. Während die Übertragung der Quantensignale zwar – basierend auf fundamentalen physikalischen Gesetzmäßigkeiten – sicher ist, können in der verwendeten Hardware und Software Sicherheitslücken existieren. Zudem sind Anwender oft nicht in der Lage, die Sicherheit solcher Geräte selbst zu überprüfen und so die Vertrauenswürdigkeit kommerzieller QKD-Systeme sicherzustellen. Um diesem Risiko entgegenzuwirken, müssen künftig eingesetzte Quantenkommunikationssysteme und Protokolle physikalisch-technisch nachweisbar sicher sein. Dies schafft die Voraussetzung, dass ihre Sicherheit im Anschluss durch staatliche Zertifikate garantiert werden kann.
Zentraler Forschungsbedarf besteht daher bei der Untersuchung mögliche Sicherheitslücken für Angriffe auf aktuelle Quantenkommunikationstechnologien, welche sich bei deren Integration in konventionelle Kommunikationsnetzwerke ergeben. Hier stehen neben Angriffen auf Schlüsseldaten auch Angriffe auf den Betrieb des Systems selbst im Fokus. Die Sicherheit muss hierbei unabhängig von konkret eingesetzten Komponenten und unabhängig vom Hersteller garantiert werden können. Zuletzt ist der Einbezug der deutschen Industrie für eine Überführung der Systeme in die Anwendung unerlässlich, um die Praxistauglichkeit und Kompatibilität zu bestehender Infrastruktur zu garantieren.
Für den Schritt von bestehenden Technologien hin zu breit einsatztauglichen IT-Sicherheitslösungen bedarf es großer Forschungsanstrengungen. Um die Forschung dahingehend zu stimulieren und zu beschleunigen, beabsichtigt das Bundesministerium für Bildung und Forschung (BMBF) daher, die Erforschung und Entwicklung von Technologien und Methoden zum sicheren Einsatz von Quantenkommunikation in der Anwendung zu fördern.
1.2 Zuwendungszweck
Zweck der Zuwendung ist es, innerhalb einer dem Projekt angemessenen Projektlaufzeit von typischerweise drei Jahren, durch neue Software- und Hardwarelösungen innovative Quantenkommunikationssysteme zu entwickeln, welche widerstandsfähig gegen externe Angriffe sind und in der Lage sind, auf diese zu reagieren. Dies umfasst beispielsweise verschiedenste Angriffstypen auf ein Quantenkommunikationsnetzwerk, wie Seitenkanalangriffe und Denial-of-Service Attacken, welche durch gezielte Überlastung des Netzwerks dessen Einsatz blockieren. Ein praxistaugliches System muss eine hohe Widerstandsfähigkeit gegen solche Angriffe Dritter besitzen sowie in der Lage sein, bei Bedarf geeignete Gegenmaßnahmen einzuleiten, um die sichere Kommunikation aufrechtzuerhalten. Durch die Zusammenarbeit von Unternehmen und Forschungseinrichtungen soll das bereits vorhandene Know-how aus Deutschlands hervorragend aufgestellter Grundlagenforschung auf Umsetzungspartner aus der Wirtschaft transferiert und in die Anwendung gebracht werden. Die Förderung leistet damit einen wichtigen Beitrag zur technologischen Souveränität Deutschlands im Bereich der IT-Sicherheit.
Die Fördermaßnahme ist Teil des Forschungsrahmenprograms „Digital. Sicher. Souverän“ der Bundesregierung zur IT-Sicherheit und leistet einen Beitrag zur Umsetzung der künftigen Zukunftsstrategie Forschung und Innovation der Bundesregierung.
Die Ergebnisse des geförderten Vorhabens dürfen nur in der Bundesrepublik Deutschland oder dem EWR und der Schweiz genutzt werden.
2 Gegenstand der Förderung
Gegenstand der Förderung sind Forschungs- und Entwicklungsprojekte mit dem Ziel, die Sicherheit und Widerstandsfähigkeit gegen Angriffe von Dritten von Quantenkommunikationssystemen in der Anwendung voranzutreiben.
Gefördert werden Einzel- und Verbundvorhaben, die die Systeme für den Einsatz unter realen Bedingungen weiterentwickeln, unter anderem mögliche Schwachstellen und Angriffspunkte in diesen identifizieren und Gegenmaßnahmen für diese entwerfen. In den Vorhaben können sowohl verbesserte Übertragungsprotokolle als auch notwendige Managementsoftware entwickelt werden. Daneben soll auch die benötigte Hardware für den physischen Austausch von Quantenschlüsseln auf ihre geräteunabhängige Sicherheit hin optimiert und – wenn nötig – neue Systemarchitekturen vorgeschlagen und umgesetzt werden. Beispiele für mögliche Forschungsgegenstände sind:
Die Aufzählung ist als beispielhaft und nicht als abschließend anzusehen. Es können auch andere Schwerpunkte zu Quantenkommunikationssystemen gefördert werden, sofern sie eindeutig die Sicherheit von Quantenkommunikationssystemen adressieren. Die gewählten Ansätze sollen in einem nachhaltigen technologischen Fortschritt resultieren. Die grundsätzliche Praxistauglichkeit der erforschten Technologie soll idealerweise innerhalb der Projektlaufzeit vorangetrieben werden. Die Verbünde sollen vorhandene Expertise im Bereich der Quantenkommunikation und der IT-Sicherheit miteinander verbinden. Eine Einbindung von Know-how-Trägern auf Seiten der Industrie ist erwünscht. Querschnittsthemen wie Normung, Standardisierung und vorbereitende Arbeiten zur Zertifizierung sollten, soweit erforderlich, in den Vorhaben berücksichtigt werden.
3 Zuwendungsempfänger
Antragsberechtigt sind:
Zum Zeitpunkt der Auszahlung einer gewährten Zuwendung wird das Vorhandensein einer Betriebsstätte oder Niederlassung (Unternehmen) beziehungsweise einer sonstigen Einrichtung, die der nichtwirtschaftlichen Tätigkeit des Zuwendungsempfängers dient (Hochschule, außeruniversitäre Forschungseinrichtung, andere Institution, die Forschungsbeiträge liefert, Verband, Verein oder Non-Profit-Organisation, Kommune und deren Einrichtungen sowie Behörde und deren Forschungseinrichtungen), in Deutschland verlangt.
Forschungseinrichtungen, die von Bund und/oder Ländern grundfinanziert werden, können neben ihrer institutionellen Förderung nur unter bestimmten Voraussetzungen eine Projektförderung für ihre zusätzlichen projektbedingten Ausgaben beziehungsweise Kosten bewilligt bekommen.
Zu den Bedingungen, wann eine staatliche Beihilfe vorliegt/nicht vorliegt, und in welchem Umfang beihilfefrei gefördert werden kann, siehe FuEuI-Unionsrahmen.
KMU im Sinne dieser Förderrichtlinie sind Unternehmen, die die Voraussetzungen der KMU-Definition der EU erfüllen. Der Antragsteller erklärt gegenüber der Bewilligungsbehörde seine Einstufung gemäß Anhang I der AGVO im Rahmen des schriftlichen Antrags.
In der ersten Verfahrensstufe sind dem beauftragten Projektträger VDI/VDE Innovation + Technik GmbH bis spätestens 17. März 2023 Projektskizzen in schriftlicher und/oder elektronischer Form unter der Fördermaßnahme „Sicherer Einsatz von Quantenkommunikation in der Anwendung“ einzureichen.
Die vollständige Richtlinie finden Sie hier.
]]>Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
]]>
Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
Die vollständige Richtlinie finden Sie hier.
Start-ups kommt für den Transfer von neuen wissenschaftlich-technischen Erkenntnissen aus der Forschung in Innovationen und ihrer wirtschaftlichen Verwertung eine besondere Bedeutung zu. Aus diesem Grund unterstützt das Bundesministerium für Bildung und Forschung (BMBF) forschungsorientierte Unternehmen kurz nach sowie in der Phase unmittelbar vor der Gründung. Die Fördermaßnahme „Enabling Start-up – Unternehmensgründungen in den Quantentechnologien und der Photonik“ verfolgt das Ziel, innovative Ideen in den Quantentechnologien und der Photonik aus Hochschulen und Forschungseinrichtungen über Ausgründungen in Richtung einer Anwendung und wirtschaftlichen Verwertung zu überführen. Dazu sollen insbesondere Verbünde aus einem Start-up und einer Hochschule oder Forschungseinrichtung gefördert werden.
Kurzfassung
Das Bundesministerium für Bildung und Forschung (BMBF) unterstützt Sie bei Forschungs- und Entwicklungsprojekten aus dem Bereich der Quantentechnologie und der Photonik. Die Förderung richtet sich speziell an Start-ups in der Gründungsphase.
Gefördert werden Einzelvorhaben oder Verbundprojekte mit Hochschulen und Forschungseinrichtungen, die innovative Ideen in Richtung einer Anwendung und wirtschaftlichen Verwertung überführen.
Die Förderung erfolgt im Rahmen von 2 Modulen:
Sie erhalten die Förderung als Zuschuss.
Für die Förderung ist Folgendes vorgesehen:
Das Förderverfahren ist zweistufig. In der 1. Stufe reichen Sie bitte Ihre Projektskizze bei dem Projektträger VDI-Technologiezentrum GmbH ein.
In der 2. Verfahrensstufe werden Sie für Ihre positiv bewertete Projektskizze aufgefordert, einen förmlichen Förderantrag vorzulegen. Für die Erstellung Ihrer Projektskizze und Ihres Antrags nutzen Sie bitte das elektronische Antragssystem easy-Online.
Reichen Sie Ihre Projektskizze bitte bis spätestens 31.12.2025 ein.
Antragsberechtigt sind
Weitere Voraussetzungen:
Für Ihre Planungssicherheit gibt es in diesem Jahr erstmalig einen Anmeldeschluss für die
Jungen. Dieser ist am 20. April.
Seien Sie (wieder) dabei!
Unterstützen Sie junge Männer bei ihrer Berufswahl und wecken Sie Talente!
Der Boys’Day vermittelt praktische Erfahrungen in Berufen und Studienfächern, in denen bisher nur wenige Männer arbeiten. Durch Ihr Engagement beim Boys’Day fördern Sie den männlichen Nachwuchs in Gesundheit, Pflege, Sozialer Arbeit, Erziehung, Bildung und Dienstleistung. Nach dem Aktionstag 2022 konnten sich 27 Prozent der teilnehmenden Schüler vorstellen, einen Beruf im erzieherischen oder sozialen Beruf zu ergreifen, vorher waren es nur 17 Prozent.
]]>Die Bundesagentur für Arbeit (BA) | die Bundesvereinigung Deutscher Arbeitgeberverbände
(BDA) | der Bundesverband der Deutschen Industrie (BDI) | der Bundeselternrat (BER) |der
Deutsche Gewerkschaftsbund (DGB) | der Deutsche Industrie- und Handelskammertag
(DIHK) |die Gleichstellungsministerkonferenz (GFMK) |die Initiative D21 |die
Kultusministerkonferenz (KMK) |der Zentralverband des Handwerks (ZDH)
und der Bundeskoordinierungsstelle des Girls’Day, Unternehmen und Institutionen dazu
auf, am Donnerstag, den 27. April 2023 am Aktionstag teilzunehmen!
Für Ihre Planungssicherheit gibt es in diesem Jahr erstmalig einen Anmeldeschluss für die
Mädchen. Dieser ist der 20. April.
Seien Sie (wieder) dabei!
Unterstützen Sie junge Frauen bei ihrer Berufs- und Studienwahl und wecken Sie Talente!
Der Girls’Day vermittelt praktische Erfahrungen in Berufen und Studienfächern, in denen bisher nur wenige Frauen arbeiten. Die aktuelle Studie zum Aktionstag 2022 hat gezeigt, dass der Girls’Day wirkt: Nach dem Aktionstag 2022 konnten sich z.B. 21 Prozent der teilnehmenden Schülerinnen vorstellen, einen Beruf in der Informationstechnologie oder Informatik zu ergreifen, vorher waren es nur 12 Prozent. Durch Ihr Engagement beim Girls’Day fördern Sie den weiblichen Nachwuchs in Handwerk, Industrie, Informatik, Wissenschaft und Technik. Kinder, die sich weder als Mädchen oder Jungen empfinden, können natürlich am Aktionstag teilnehmen und sich individuell für einen Beruf entscheiden.
]]>Um den Aufbau eines europäischen Ökosystems zu unterstützen sowie eine Brücke zwischen Wissenschaft und Wirtschaft zu schlagen, hat die Messe Stuttgart die Quantum Effects ins Leben gerufen. Die Fachmesse und Konferenz für Quantentechnologien fokussiert sich auf vier Säulen in diesem Bereich: Computing & Enabling Technologies, Software, Sensorik und Kommunikation. Das Ministerium für Wirtschaft, Arbeit und Tourismus des Landes Baden-Württemberg hat die Schirmherrschaft der Messe inne. Zudem wird Bosch Quantum Sensing als Hostingpartner die Veranstaltung mitgestalten.
Konferenz ist Herzstück des Rahmenprogramms
Mit der Kombination aus Ausstellung und Konferenz für Wissenschaft und Industrieanwender, bietet die Quantum Effects ein attraktives Programm für das Fachpublikum.
Das Herzstück der Quantum Effects ist das hochwertige Konferenzprogramm mit wissenschaftlichen Vorträgen für ExpertInnen sowie Anwendervorträgen für Industrie, Management und Politik. Das weitere Rahmenprogramm mit Foren zur Präsentation von Showcases, Workshop-, Networking- und Career-Area sowie Start-up Pitches rundet die Erstausgabe der Quantum Effects ab.
Quantum Effects bringt alle relevanten Marktteilnehmer zusammen
Die Fachmesse mit Konferenz adressiert sowohl Unternehmen, die bereits im Umfeld der Quantentechnologien tätig sind als auch Firmen, die im Markt noch nicht aktiv sind, aber Interesse haben eine Expertise in diesem Bereich aufzubauen. Studierende und WissenschaftlerInnen von Universitäten und Instituten zählen ebenso zur Zielgruppe wie politisch Verantwortliche
Gemeinschaftliche Ausstellung für Mitglieder von OptecNet Deutschland
Mitgliedern der regionalen Innovationsnetze Optische Technologien, die dem bundesweiten Dachverband OptecNet Deutschland angehören, bieten wir eine gemeinschaftliche Ausstellung auf der Quantum Effects an. Werden Sie Teil der OptecNet Community und profitieren Sie von der Nähe zu anderen Mitgliedern sowie von unterstützenden Marketing- und PR-Aktivitäten durch OptecNet Deutschland. Bitte nehmen Sie unter dem Stichwort „OptecNet Deutschland” direkt Kontakt zur Messe Stuttgart auf. Wir freuen uns auf Sie!
Die PartnerInnen der Quantum Effects
Neben Bosch Quantum Sensing stehen weitere PartnerInnen an der Seite der Quantum Effects. OptecNet Deutschland ist beim Aufbau der Fachmesse stark eingebunden und das Quantum Business Network organisiert die Konferenz. Mit über 10 weiteren Launch Partnern aus allen Schwerpunktbereichen der Quantentechnologien, hat die Quantum Effects bereits jetzt ein starkes Partnernetzwerk geschaffen.
Nähere Informationen erhalten Sie unter https://www.messe-stuttgart.de/quantum-effects
]]>Kontakt:
Marco Golla
Laser2000 GmbH
Tel.: +49 (0) 8153 405-39
E-Mail: m.golla(at)laser2000.de
Internet: www.laser2000.de
]]>
Bundespräsident Frank-Walter Steinmeier zeichnete heute in einer feierlichen Zeremonie das Team von ZEISS mit dem Deutschen Zukunftspreis 2022 aus. Die Jury würdigte damit die ZEISS Experten Dr. Thomas Kalkbrenner, Dr. Jörg Siebenmorgen und Ralf Wolleschensky für ihren wesentlichen Beitrag zur Entwicklung des Mikroskopsystems ZEISS Lattice Lightsheet 7.
„Wir freuen uns über den Deutschen Zukunftspreis und sind sehr stolz auf das Team, das hinter der außerordentlichen Entwicklungsleistung des ZEISS Lattice Lightsheet 7 steht“, so Dr. Jochen Peter, Mitglied des Vorstands der ZEISS Gruppe. „Gleichzeitig ist der Preis eine schöne Bestätigung der Innovationskraft unseres Unternehmens, die den wirtschaftlichen und gesellschaftlichen Fortschritt gleichermaßen fördert.“
Der Bundespräsident ehrt mit dem Preis Wissenschaftlerinnen und Wissenschaftler für herausragende technische, ingenieur- und naturwissenschaftliche Leistungen sowie Software- und Algorithmen-basierte Leistungen, die zu anwendungsreifen Produkten führen. Er ist mit 250.000 Euro dotiert. Neben der wissenschaftlichen Exzellenz ist auch ein klar erkennbarer Nutzen für die Gesellschaft, die Umwelt und für die Wirtschaft kennzeichnend für die Preisträger-Projekte.
ZEISS Lattice Lightsheet 7 ermöglicht biomedizinischen Forscher*innen erstmals, lebende Zellen über Stunden oder Tage hinweg in live und 3D zu beobachten. Sie untersuchen damit beispielsweise, wie die Zellen auf bestimmte Wirkstoffe reagieren oder was geschieht, wenn Viren oder Bakterien in Zellen eindringen. Das Problem, mit dem Wissenschaftler*innen bei der Untersuchung lebender Zellen mit Fluoreszenzmikroskopen bisher konfrontiert waren, liegt in der Beleuchtung: die Intensitäten der verwendeten Laserstrahlung sind um den Faktor 1000 höher als die der Sonne. Diese intensive Beleuchtung kann lebende Zellen nachhaltig schädigen. Eine entscheidende Verringerung dieser Photoschädigung wird durch die sogenannte Lichtblattmikroskopie erreicht: Anders als bei allen anderen Mikroskopen wird dabei die Laserstrahlung – in Form eines Lichtblattes – nur in den Bereich der Probe eingebracht, der sich im Fokus des Objektivs befindet. Hierfür musste das Team den Laser auf besondere Art und Weise bändigen und die Objektive völlig neu anordnen, da Zellen auf Deckgläsern in Kulturgefäßen wie Petrischalen und Multiwellplatten wachsen. Sie entwickelten eine völlig neuartige Mikroskop-Optik, mit der man schräg von unten durch die Probengefäße auf die darin befindliche Zelle schauen kann, ohne dass es zu Bildfehlern kommt. All das wurde zu einem einfach zu bedienenden, kompakten System mit hohem Automatisierungspotential entwickelt.
ZEISS war schon mehrfach für den Deutschen Zukunftspreis nominiert, 2020 sogar mit zwei Teams. Für die Entwicklung der EUV-Lithographie wurde das Forscher-Team von ZEISS, TRUMPF und Fraunhofer mit dem Deutschen Zukunftspreis 2020 ausgezeichnet.
Innovation hat Tradition bei ZEISS. Sie ist sozusagen in der DNA des Unternehmens verankert. Als Teil der Unternehmens-Strategie steht sie immer in einem gesamtgesellschaftlichen Kontext und ist gleichzeitig die Grundlage für weiteres Wachstum der ZEISS Gruppe. Daher investiert ZEISS dreizehn Prozent seines Umsatzes in Forschungs- und Entwicklungsarbeit.
Optische Technologien sind essenziell für den Fortschritt in Lebenswissenschaften, Medizin, Informationstechnologie und Telekommunikation, Automotive, Consumer und vielen anderen Bereichen. Künftige Kundenbedürfnisse mit Produkten, Dienstleistungen, Lösungen und Geschäftsmodellen zu erfüllen, Mehrwert zu bieten und Nutzen zu bringen, sind die Anliegen aller ZEISS Innovationen.
Die vollständige Pressemeldung erhalten Sie über diesen Link.
]]>Kontakt:
Instrument Systems GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com
]]>
Eine neue, schnelle und kostengünstige Lösung zur Streulichtmessung wurde von opsira entwickelt.
Das neue Modul, das das bewährte Roboter-Goniophotometer von opsira (robogonio) ergänzt, ermöglicht schnelle, kostengünstige und spektralaufgelöste Streulichtmessungen. Das robogonio ist ein sehr vielseitiges Gerät um die für lichttechnische Messungen erforderlichen relativen Raumwinkel und Abstände zwischen dem Prüfling (Leuchte, Lampe) und dem Detektorsystem in einem sehr weiten Bereich zu realisieren.
Ziel des Projektes war, ein Zusatzmodul für das robogonio zu entwickeln, welches die minimal erforderliche zusätzliche Anzahl von 2 Achsen nicht als zusätzliches Gerät, sondern als zusätzlichen „Greifer“ am robogonio realisiert.
Das Projekt wird gefördert durch:
- Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages.
Pressekontakt
Uta Vocke
opsira GmbH
Leibnizstrafle 20
88250 Weingarten
Telefon: 0049 751 561 890
Email: vocke(at)opsira.de
www.opsira.de
The Academy is hosted by the German Federal Ministry of Education and Research (BMBF), the Israeli Ministry of Innovation, Science and Technology (MOST), and the German Embassy in Tel Aviv in cooperation with the Weizmann Institute of Science, the Munich Quantum Valley (MQV), and the Munich Center for Quantum Science and Technology (MCQST), the German Israeli Foundation for Scientific Research and Development (GIF), and the VDI Technologiezentrum.
Students of engineering or natural sciences from universities in Israel and Germany in bachelor and master programs with basic knowledge in quantum physics (typically third year onwards).
Given the ongoing COVID-19 situation, a willingness to comply with pandemic regulations is assumed.
Participation in the academy is free of charge. Meals and housing will be provided. Travel expenses will be reimbursed in coordination with the organizers. The event language is English.
The academy will be held in two parts. With your application you confirm that you are willing and able to attend both parts:
Interested students apply with a short letter of motivation (approx. one page DIN A4), a recent CV, and a recent transcript of records, to be uploaded by 13th November 2022 through
https://www.quantentechnologien.de/event/quantum-future-academy-2023.html
The best applicants will receive a ticket to attend the academy in Israel and Germany!
]]>
Kontakt:
SCANLAB GmbH
Siemensstr. 2a
82178 Puchheim
Tel. 089 800 746-0
E-Mail: presse@scanlab.de
Internet: www.scanlab.de
Kontakt:
CHIPS 4 Light GmbH
Am Kühlen Kasten 8
93161 Sinzing
E-Mail: beate.jungwirth(at)chips4light.com
Internet: www.chips4light.com
Kontakt:
LASER COMPONENTS Germany GmbH
Werner-von-Siemens-Str. 15
82140 Olching
E-Mail: info(at)lasercomponents.com
Internet: www.lasercomponents.com
]]>
Folgenden Messepaketen können Sie dabei wählen:
Das ist die W3+ Fair
Die W3+ Fair ist die Plattform für technologiegetriebene Innovationen. Hier bringen die Enabling Technologies rund um Optik, Photonik, Elektronik und Mechanik gemeinsam mit zentralen Anwenderindustrien neue Innovationen auf den Weg. Auf der kostenfreien Begleitkonferenz, den en-tech.talks, sorgen renommierte Referenten für Inspiration und top-aktuelles Wissen.
Das Rheintal in der Vierländerregion zählt zu den Top Ten der 1.200 Hightech-Standorte in Europa. Knüpfen Sie neue Expertenkontakte aus verschiedenen Branchen, sammeln Sie Ideen für künftige Innovationen und werden Sie Teil der länderübergreifenden Denkfabrik.
Networking und Knowledge Transfer über Fach- und Ländergrenzen hinweg.
Das sind die Vorteile der W3+ Fair
Wir würden uns sehr freuen, wenn dieses Angebot interessant für Sie wäre und wir Sie als Mitaussteller auf dem PHOTONICS GERMANY Gemeinschaftsstand auf der Messe W3+ Fair 2022 in Dornbirn willkommen heißen dürfen!
Für Rückfragen zur Anmeldung, Standposition oder Anregungen und Wünsche steht Ihnen Projekt Director Jörg Brück per Mail oder telefonisch unter +49 151 40 74 79 79 gern zur Verfügung.
PHOTONICS GERMANY - PHOTONIK DEUTSCHLAND ist die Allianz von OptecNet Deutschland und SPECTARIS
]]>Bereits am 11. Oktober 2022 freuen wir uns, Sie zum Get-together am Abend bei einer Schiffsfahrt auf der Spree von 19 bis 22 Uhr begrüßen zu dürfen. Ab Berlin-Mitte erkunden wir interessante Sehenswürdigkeiten am Rande der Spree zwischen Friedrichshain-Kreuzberg und Charlottenburg. Dabei geben wir Ihnen auch einen Einblick zur Photonik in Berlin. Und natürlich wird vor allem das Networking eine große Rolle spielen.
Weitere Informationen zu der Veranstaltung, die Anmeldung sowie Hotelempfehlungen finden Sie hier.
Das genaue Programm finden Sie hier.
Die Teilnahmegebühr beträgt für Mitglieder von SPECTARIS und/oder einem der regionalen Innovationsnetze Optische Technologien (OptecNet) 120,00 EUR (zzgl. MwSt.) und für Nicht-Mitglieder 240,00 EUR (zzgl. MwSt.). Die Teilnahmegebühr umfasst das Get-together am Vorabend und die Veranstaltung am 12. Oktober 2022.
Profitieren Sie bei einer Anmeldung bis zum 19. September 2022 von dem Aktionscode "Photonik" und erhalten Sie 20% Rabatt!
Die Anmeldung ist bis spätestens zum 4. Oktober 2022 möglich unter
https://eveeno.com/photonics-germany-2022
Wir freuen uns auf Sie!
]]>Auch diskutierten Alfred Link und die Polytec Prokuristen Eric Winkler und Marcus Göhringer mit der Politikerin über die Auswirkungen der weltweiten Krisen, den Bürokratieabbau von Vergabeverfahren, den Ausbau des Mobilfunknetzes in der Region, die Digitalisierung und das Thema Ausbildung. „Wir sind mit zwei Azubis gestartet, heute bilden wir elf junge Menschen aus, plus fünf, die im September ihre Ausbildung anfangen“, erklärt Göhringer, der das Personalwesen leitet.
Begleitet würde die Ministerin von der Landtagsabgeordneten Christine Neumann-Martin und Mehran Ghahremanpour, Referent für Maschinenbau- und Elektroindustrie des Landtages. Auch Christian Stalf, Bürgermeister von Waldbronn, und Gemeinderatsmitglied Roland Bächlein kamen zum Termin.
Über Polytec
Polytec entwickelt, produziert und vertreibt seit über 50 Jahren und mit fast 500 Mitarbeitern weltweit optische Messtechnik-Lösungen für Forschung und Industrie. Das Unternehmen ist in den Technologiebereichen Vibrometrie, Velocimetrie, Oberflächenmesstechnik, Prozessanalytik und optischen Technologien zuhause. Mit der Polytec PT GmbH verfügt die Firmengruppe zudem über ein Unternehmen, das sich spezialisiert hat auf die Entwicklung, Fertigung und den Vertrieb von Industrieklebstoffen und thermischen Interfacematerialien.
Die Entwicklung und Fertigung findet ausschließlich im Waldbronner Stammhaus statt. Daneben unterhält das Hochtechnologieunternehmen Niederlassungen in den USA, in England, Frankreich, Japan, Singapur und in China und ein weltweites Netzwerk an Vertriebspartnern.
Die Pressemeldung finden Sie hier.
]]>
Zwei neue Partnerfirmen erweitern seit Juni 2022 die weltweite opsira Präsenz. opsira ist nun auch in Frankreich, Japan, Kanada und den USA vertreten.
Vertriebspartner in Frankreich:
ARDOP INDUSTRIE
www.ardop.com
Vertriebspartner in Japan, Kanada und USA:
CBS Convenient Business Solutions, Inc.
technixbycbs.com
Diese Pressemitteilung finden Sie zum Download hier: https://www.opsira.de/downloads/presse/
Pressekontakt: Uta Vocke
vocke(at)opsira.de
www.opsira.de
"Neben der erfolgreichen Integration der Mitarbeiter war die erfolgreiche Implementierung der MPO 100-Produktion an unserem Standort in Heidelberg ein wichtiger Meilenstein", sagt Konrad Roessler, CEO der Heidelberg Instruments Mikrotechnik GmbH. "Die Produktion am ISO 9001 zertifizierten Standort in Heidelberg garantiert ein hohes Qualitätsniveau, während unsere Kunden durch den weltweiten Vertrieb und Service über globale Niederlassungen und Partnernetzwerke optimal unterstützt werden." Mit dem zu erwartenden weiteren Wachstum und steigender Bekanntheit im TPP-Technologiefeld wird die Verschmelzung von Multiphoton Optics auf Heidelberg Instruments die Verwaltungsprozesse reduzieren und die Zusammenarbeit noch weiter fördern.
Kontakt:
Multiphoton Optics GmbH
Friedrich-Bergius-Ring 15
D-97076 Würzburg
E-Mail: press(at)multiphoton.de
Internet: https://multiphoton.net
Kontakt:
SphereOptics GmbH
Gewerbestrasse 13
82211 Herrsching
E-Mail: info(at)sphereoptics.de
Internet: www.sphereoptics.de
Zwei neue Forschungsgebäude ermöglichen den Forschenden des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF weiterhin auf dem neuesten Stand der Technik innovative Technologien auf der Grundlage von Verbindungshalbleitern zu entwickeln. Mit dem neuen Laborgebäude für optoelektronische Messtechnik und Quantensensorik sowie der neuen Anlagenhalle für die metallorganische chemische Gasphasenabscheidung (metal organic chemical vapor deposition, MOCVD) legt das Institut den Grundstein für die strategische Weiterentwicklung seiner Kernkompetenzen. Die durch Mittel des Bundes, des Landes Baden-Württemberg und des Bundesministeriums der Verteidigung (BMVg) finanzierten Neubauten wurden am 30. Juni 2022 feierlich eingeweiht und erfüllen hohe Standards hinsichtlich Energieeffizienz, Nachhaltigkeit und Baudynamik.
Feierliche Einweihung des Laborgebäudes und der MOCVD-Halle
Den großen Mehrwert der Neubauten für das Institut erläutert der Bereichsleiter für Forschungsinfrastruktur, Dr. Martin Walther, wie folgt: »Mit den neuen Laboren stehen unseren Wissenschaftlerinnen und Wissenschaftlern noch bessere Forschungsbedingungen zur Verfügung. Namentlich die Applikationslabore für Quantensensorik und Laser-Spektroskopie erweitern die Kooperationsmöglichkeiten mit Industrie- und Forschungspartnern signifikant. Durch die neue MOCVD-Halle konnten wir zudem unseren Epitaxie-Anlagenpark vergrößern, das Niveau der Materialqualität und Reproduzierbarkeit weiter erhöhen und zugleich einen deutlich effizienteren Betrieb sicherstellen.« Der geschäftsführende Institutsleiter des Fraunhofer IAF, Prof. Dr. Rüdiger Quay, betont außerdem: »Es freut mich sehr, dass die Gebäude den Anforderungswert der Energieeinsparverordnung (EnEV) übertreffen und CO2-neutrale Bauelemente aufweisen. Das ist ein wichtiges Signal für unser Vorhaben, gemeinsam mit der Fraunhofer-Gesellschaft bis 2030 Klimaneutralität zu erreichen.«
Grußworte im Rahmen der feierlichen Eröffnung sprachen Rüdiger Quay und Freiburgs Baubürgermeister Prof. Dr. Martin Haag. Gemeinsam mit der Geschäftsführerin der Freiburg Wirtschaft Touristik Messe GmbH & Co. KG (FWTM), Hanna Böhme, durchschnitten sie das Band. Zu den geladenen Gästen gehörten neben Vertreterinnen und Vertretern verschiedener Fraunhofer-Einrichtungen Gabriele Rolland aus dem Landtag von Baden-Württemberg, Prof. Dr. Stefan Glunz und Prof. Dr. Frank Balle vom Institut für Nachhaltige Technische Systeme (INATECH) der Universität Freiburg, Prof. Dr. Jürgen Wöllenstein, JProf. Dr. Matthias Kuhl und Prof. Dr. Stefan Rupitsch vom Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg sowie die Architektin und der Architekt der neuen Gebäude, Ann-Kathrin Goerke und Matthias Solbach.
Optimale Forschungsbedingungen und nachhaltige Bauweise
Im neuen Laborgebäude stehen insgesamt 22 Labore auf 900 m2 Nutzfläche zur Verfügung, die baudynamisch für den Einsatz höchst schwingungsempfindlicher Geräte konzipiert wurden. Sie halten die Schwingungsgrenzwertlinien B und C der sogenannten Vibration Criteria (VC) ein und eignen sich so beispielsweise für den Betrieb von Mikroskopen bis zu 1000-facher Vergrößerung oder Lithographie- wie Inspektionsgeräten mit Strukturbreiten bis 3 beziehungsweise 1 µm. Dies gewährleistet langfristig die Nutzung anspruchsvoller Messtechnik für immer kleiner werdende Strukturen und erlaubt die intensive Erforschung und Entwicklung von Quantensensoren wie Rastersonden-, Weitfeld- und Laserschwellen-Magnetometern sowie laserbasierter Sensorik und innovativer Halbleiter-Laser.
Die neuerrichtete MOCVD-Halle bietet Platz für fünf hochmoderne Anlagen, mit denen das Fraunhofer IAF insbesondere seine epitaktischen Aktivitäten im Bereich der Halbleiter mit hoher Bandlücke ausbauen kann. Zu den vier Bestandsanlagen, die aus dem Reinraum des Hauptgebäudes umgezogen wurden, kam eine neue Anlage speziell für die Abscheidung von Aluminiumgalliumnitrid (AlGaN) mit hohem Aluminiumgehalt. Die neue Anlage erreicht Temperaturen bis zu 1400 °C, was sich positiv auf Kristallqualität und Homogenität auswirkt. Vorteile ergeben sich zudem aus der Ausstattung der Halle, die über autonome regenerative Aufbereitungssysteme verfügt, wodurch energieeffizientere und nachhaltigere Fertigungsprozesse ermöglicht werden.
Mit 388 kWh/(m2a) für das Laborgebäude und 245 kWh/(m2a) für die MOCVD-Halle liegen die Primärenergiebedarfe beider Neubauten unter den EnEV-Anforderungswerten für vergleichbare industrielle Gebäude. Besonders umweltfreundlich sind zudem die in beiden Gebäuden verlegten Fußböden, die nach Ablauf der Nutzungsdauer recycelt werden. Es handelt sich um Beläge aus natürlichen Rohstoffen und deutscher Herstellung, deren gesamter Produktionszyklus eine neutrale CO2-Bilanz aufweist. Allein in der MOCVD-Halle konnten durch die Fußböden 47 t CO2 kompensiert werden.
Nähere Informationen erhalten Sie hier.
Pressekontakt
Armin Müller
Redaktion
Tullastraße 72
79108 Freiburg
Telefon +49 761 5159-670
]]>
Elektrodenfolien für Li-Ionen-Batterien bestehen aus einem Aktivmaterial (Nickel-Mangan-Kobalt-Kügelchen plus Lithium), Leitadditiven und Binder. Diese Materialien werden als Suspension auf eine Aluminiumfolie aufgebracht und dann zu einer etwa 100 µm dünnen Schicht eingetrocknet. Nicht selten entmischen sich die Bestandteile der Suspension während des Trocknungsprozesses, sodass der Binderanteil an einigen Stellen zu gering ist. Dies beeinträchtigt die Haftung der Gesamtschicht. Ein optisches Inline-Messsystem, das Fraunhofer IPM und Fraunhofer ISIT im Projekt Q-LIB gemeinsam mit den Firmen VARTA und OWIS entwickelt haben, erlaubt es nun, den Beschichtungsprozess in Bezug auf die Mischung aktiv zu regeln. So kann Ausschuss in der Produktion reduziert und die Anlaufzeit bei der Produktion von neuen Rezepturen verkürzt werden.
Inline-Messsystem mit LIBS-Technologie
Das Inline-Messsystem basiert auf laserinduzierter Plasmaspektroskopie (LIBS). LIBS ist ein laserspektroskopisches Verfahren, mit dem sich die elementspezifische Zusammensetzung einer Probe bestimmen lässt. Das System ermittelt die Materialverteilung in der Elektrodenfolie punktweise als 3D-Mapping. Damit kann sowohl das korrekte Mischungsverhältnis der Bestandteile als auch deren homogene Verteilung über das gesamte Elektrodenvolumen detektiert werden. Das macht eine Qualitätskontrolle und -regelung in Echtzeit möglich. Die Herausforderung dabei war, die Verteilung nicht nur an der Oberfläche, sondern auch tiefenaufgelöst innerhalb der gesamten Beschichtung zu messen – und zwar bei Produktionsgeschwindigkeiten von rund 20 m/min.
Kürzlich wurde das Messsystem am Fraunhofer ISIT in die Laboranlage einer Elektrodenfertigung integriert. Dort wurden Elektrodenfolien der VARTA Microbattery GmbH unter realen Produktionsbedingungen erfolgreich vermessen.
Nähere Informationen erhalten Sie hier.
Pressekontakt
Holger Kock
Leiter
Kommunikation und Medien
Georges-Köhler-Allee 301
79110 Freiburg
Telefon +49 761 8857-129
TRUMPF Pressemitteilung vom 05.07.2022
Die Investitionen in Gebäude, Maschinen und Anlagen belaufen sich auf eine Summe mit mittleren einstelligen Millionenbereich. Ab Mitte nächsten Jahres sollen auf dem Gelände rund 150 Mitarbeiter beschäftigt sein. „Mit diesen Produktionskapazitäten nahe am Stammhaus bekennen wir uns einmal mehr zum Industriestandort Deutschland. Moderne Industrie ist der Schlüssel für Beschäftigung und unseren Wohlstand in Baden-Württemberg“, sagt Christian Schmitz, als Mitglied des TRUMPF Vorstands verantwortlich für den Geschäftsbereich Lasertechnik.
Laser für die Automobilindustrie kommen künftig auch aus Leonberg
Auf dem rund 15.000 Quadratmeter großen Grundstück stehen TRUMPF nach Fertigstellung zwei Gebäude mit rund 5.700 und 5.500 Quadratmetern zur Verfügung. Ein Gebäude ist für die Produktion von sogenannten 3-D-Laseranlagen vorgesehen. Mit diesen Maschinen lassen sich neben flachen Blechen auch dreidimensionale Bauteile bearbeiten. Sie kommen in der Automobilindustrie und in anderen metallverarbeitenden Branchen zum Einsatz, um beispielsweise Karosseriebauteile zu schneiden oder Bauteile für die Batteriefertigung zu bearbeiten. TRUMPF möchte pro Jahr rund 200 Anlagen in Höfingen fertigen. Das zweite Gebäude möchte TRUMPF für die Arbeit an Hochleistungslasern für die Chip-Fertigung nutzen.
Der Gewerbepark City Docks entsteht auf dem ehemaligen Sümak-Gelände in Leonberg-Höfingen.
Nähere Informationen erhalten Sie hier.
]]>
Wetzlar, 11. Juli 2022
Viele zufriedene Gesichter gab es am Abend des 7. Juli, als sich die Türen nach zwei Messetagen in Wetzlar schlossen. 126 Aussteller, Partner und Sponsoren und mehr als 1500 Besucher hatten sich auf den Weg in die Buderus Arena Wetzlar gemacht, um über neue Innovationen und Lösungen zu fachsimpeln und branchenübergreifend zu Netzwerken. Die Aussteller der Enabling Technologies rund um Optik, Photonik, Elektronik und Mechanik kamen aus 11 Ländern: Neben Deutschland und der Schweiz waren Frankreich, England, USA, die Niederlande, Dänemark, Irland, Tschechische Republik, Lichtenstein und China auf der Veranstaltung vertreten.
Neben der Ausstellung gab es jede Menge Inspiration durch das umfangreiche Rahmenprogramm. Die Begleitkonferenz en-tech.talks fand in diesem Jahr gleich auf zwei Bühnen statt. Zusätzlich zu den Präsentationen rund um New Technologies, Business Opportunities, Applications und Industry 4.0 gab es interessante Vortragsblöcke zu den Top-Themen Defense & Security, unterstützt von OptecNet Deutschland, und Quantum. Neu waren auch der High-Power Laser Workshop von Wetzlar Network, der Workshop forest@photonics von OptecBB, die IHK Hessen innovativ Fläche, der Start-up Pitch vom Regionalmanagement Mittelhessen, der C-Level Coffee von Wetzlar Network, die VDI Sonderfläche mit dem Netzwerkfrühstück, der Besuch zweier Facharbeitsgruppen der IHK Gießen-Friedberg sowie die Sonderfläche von EOS/ Additive Minds Academy. Insgesamt boten mehr als 60 Referenten ihr Fachwissen auf der Konferenzbühne oder in den Workshops an.
Jörg Brück, Project Director der W3+ Fair, zieht ein positives Fazit nach der Messe: „Netzwerken braucht persönliche Begegnung – das hat die Messe wieder gezeigt. Der Neustart in Wetzlar nach der Corona-Pause kam bei allen Ausstellern und Besuchern sehr gut an. Für die kommende W3+ Fair setzen wir auf noch mehr Inspiration durch neue Innovation Areas und erweiterte Networking-Möglichkeiten.“
Die nächste W3+ Fair Rheintal findet am 30. November + 01. Dezember in Dornbirn/ Österreich (D/A/CH/LI) statt. Die W3+ Fair Wetzlar folgt am 22. + 23. März 2023 wieder im alten Rhythmus.
Nähere Informationen erhalten Sie hier.
]]>Der Technische Report CIE 250:2022 kann im Online-Shop der CIE erworben werden.
Auf der Light+Building in Frankfurt erfahren die Besucher am Stand von Instrument Systems vom 2.-6.10.2022 mehr über hochpräzise und rückführbar kalibrierte Lichtmessgeräte (Halle 8.0 H38).
Kontakt:
Instrument Systems Optische Messtechnik GmbH
Kastenbauerstr. 2
81677 München
E-Mail: info(at)instrumensystems.com
Internet: www.instrument-systems.com
Kontakt:
Multiphoton Optics GmbH
Friedrich-Bergius-Ring 15
D-97076 Würzburg
E-Mail: press(at)multiphoton.de
Internet: https://multiphoton.net
]]>
Der gemeinnützige NMWP e.V. vereint 80 Mitglieder und fungiert als zentrale Plattform für Entscheidungsträger aus Wissenschaft und Wirtschaft in Nordrhein-Westfalen. Gemeinsam mit Politik und Öffentlichkeit werden gesellschaftliche Herausforderungen identifiziert und innovative Lösungen und Anwendungen in den Bereichen „Nanotechnologie“, „Mikrosystemtechnik“, „Werkstoffe und Materialien“ sowie „Photonik und Quantentechnologien“ entwickelt. Die Mitglieder des NMWP e.V. setzen sich aus kleinen und mittelständischen Unternehmen sowie aus internationalen Akteuren und Forschungseinrichtungen zusammen. Weitere Informationen unter www.verein.nmwp.de
Künftig können die Mitglieder des NMWP e.V. das gesamte Leistungsspektrum von OptecNet Deutschland und zahlreiche Angebote der regionalen Innovationsnetze Optische Technologien und Quantentechnologien nutzen. Dies umfasst bundesweite und internationale Aktivitäten zu Innovationsförderung, Marketing und Öffentlichkeitsarbeit, internationale Messeauftritte und Kooperationen, Nachwuchsförderung sowie zahlreiche Weiterbildungsseminare.
Vom 12. – 13. Dezember 2022 plant OptecNet Deutschland eine Gemeinschaftsausstellung auf der Internationalen Konferenz mit begleitender Ausstellung „OASIS“ in Tel Aviv, vom 25. – 26. April 2023 steht die Jahrestagung in Fürstenfeldbruck auf dem Programm und vom 27. – 30. Juni 2023 ist ein erneuter Gemeinschaftsstand auf der Messe „LASER World of Photonics“ in München geplant. Weitere Informationen und Anmeldung unter www.optecnet.de
„Wir heißen NMWP und alle seine Mitglieder ganz herzlich bei OptecNet Deutschland willkommen und freuen uns sehr auf die Zusammenarbeit. Mit NMWP gewinnen wir ein starkes Partnernetzwerk für die Photonik sowie interdisziplinäre Technologien. Auch werden wir mit NMWP unsere Aktivitäten im Bereich Quantentechnologien weiter ausbauen und neue Angebote starten“, so Dr. Andreas Ehrhardt, Vorstand von OptecNet Deutschland.
„Ganz besonders freue ich mich, dass OptecNet Deutschland nun auch in der so wichtigen Technologieregion Nordrhein-Westfalen mit einem weiteren kompetenten Partnernetz vertreten ist“ so Dr. Horst Sickinger, Vorstand von OptecNet Deutschland.
„Wir begrüßen es sehr, nach erfolgreichen einzelnen länderübergreifenden Aktivitäten nun eine langfristige Zusammenarbeit im Feld der Schlüsseltechnologie Photonik zu beginnen“, freut sich Prof. Dr. Barbara Milow, Vorstandsvorsitzende von NMWP e.V.
„Die Beteiligung wird die Sichtbarkeit der NRW Akteure erhöhen und neue Innovationen anstoßen. Wir freuen uns auf die gemeinsamen Aktivitäten“, sagt Dr. Michael Heuken, Vorsitzender des Fachbereichs Photonik im NMWP e.V.
OptecNet Deutschland lädt alle Unternehmen und Forschungseinrichtungen der Photonik-Branche in Deutschland zu einer engen und vertrauensvollen Zusammenarbeit zur Förderung der Schlüssel- und Zukunftstechnologien Photonik und Quantentechnologien ein. Ziele sind insbesondere die Stärkung der Innovationskraft, die Sicherung des führenden Photonik-Standorts Deutschland und der Aufbau eines innovativen Ökosystems für die Quantentechnologien.
Weitere Informationen und Kontakt unter www.optecnet.de
]]>The prize is awarded to the most talented women entrepreneurs from across the EU and countries associated to Horizon Europe, who have founded a successful company and brought innovation to the market. The prize is managed by the European Innovation Council and SMEs Executive Agency, and the winners are chosen by an independent expert jury.
Categories
There are two prize categories:
Eligible applicants can only apply to one category.
Who should apply
The prize is open to:
Those applying for the Rising Innovators category must be under 35. There is no age limit to apply for the Women Innovators category.
Applications to the ninth edition of the EU Prize for Women Innovators are now open.
Deadline for applications is 18 August 2022 at 17.00 (CET).
For more information, please follow the link.
]]>Die siebte Ausgabe der LASYS ist am Donnerstag mit einer positiven Stimmung zu Ende gegangen. In der Mahle Halle 4 auf dem Stuttgarter Messegelände informierten sich die FachbesucherInnen aus ganz Europa bei insgesamt 93 Ausstellenden aus 16 Nationen. Der internationale Anteil bei den Ausstellenden lag bei 34 Prozent. „Die LASYS hat sich in einem starken Marktumfeld mit vielen großen Veranstaltungen im Mai und Juni dieses Jahres beachtlich geschlagen. Mit ihrem klaren Fokus auf die Laser-Materialbearbeitung konnte die LASYS interessierten Fachbesucherinnen und Fachbesuchern eine attraktive Marktplattform bieten“, sagt Roland Bleinroth, Geschäftsführer der Messe Stuttgart.
Dr. Sven Breitung, Geschäftsführer der Arbeitsgemeinschaft Laser und Lasersysteme für die Materialbearbeitung im VDMA, fasst die Veranstaltung wie folgt zusammen: „Unsere Mitglieder und wir haben uns auf der LASYS sehr wohl gefühlt. Es war schön, sich endlich wieder persönlich zu treffen und auszutauschen. Unabhängig von diesem Networking war der hohe Besucheranteil aus dem Ausland sehr erfreulich, den unsere Mitglieder an ihren Ständen ebenfalls registriert haben.“
Ausstellende berichten von qualitativ hochwertigen Gesprächen
„Kompakt. Fokussiert. Praxisnah. Dieses Jahr war im Schnitt auf jedem zweiten Stand ein Laser in Aktion zu sehen, das große Plus der LASYS. Unsere Ausstellenden berichten von hochqualifizierten Fachbesucherinnen und Fachbesuchern sowie ausführlichen Gesprächen auf der Messe, wenngleich sie erwartungsgemäß weniger frequentiert war als zuletzt. Wir erarbeiten nun das Konzept der nächsten LASYS. Das Thema Batteriefertigung wird künftig eine zentrale Rolle spielen“, sagt Gunnar Mey, Direktor Messen & Events bei der Messe Stuttgart.
Auch die Ausstellenden auf der LASYS zogen überwiegend ein gutes Fazit. Markus Forytta, Leiter Unternehmenskommunikation des Fraunhofer-Instituts für Werkstoff- und Strahltechnik IWS, zeigte sich am Ende der Fachmesse zufrieden: „Für uns ist die LASYS aufgrund der qualitativ hochwertigen Gespräche sehr gut gelaufen. Ebenfalls positiv sehen wir die Synergieeffekte durch die parallele Veranstaltung der CastForge und der SurfaceTechnology. Denn so konnten wir auch jenen Messebesuchern die Lasermaterialbearbeitung näherbringen, die mit diesem Thema bisher noch nicht in Berührung gekommen waren.“
Auch Steven Glover, COO, Laser Institute of America (LIA) äußert sich zufrieden: „Für uns als internationale Mitgliedervereinigung war die LASYS eine ausgezeichnete Gelegenheit, sich persönlich mit zahlreichen Mitgliedern auszutauschen und neue Kontakte zu knüpfen. Nach den letzten Jahren war das sehr wichtig.”
Nikolas Meyer, Leiter der Business Unit Vertrieb und Applikation bei der EMAG LaserTec GmbH, schließt sich dem positiven Feedback an: „Wir haben unseren Auftritt auf der LASYS dafür genutzt, die Wahrnehmung unseres Unternehmens als Hersteller von Lasermaschinen mit erweiterten Anwendungen für die Laser-Materialbearbeitung zu steigern. Zu diesen Anwendungen gehören das Laserhärten oder das Laserauftragschweißen, beispielsweise von beschichteten Bremsscheiben. Dieses Ziel haben wir erreicht und konnten qualitativ hochwertige Gespräche an unserem Stand führen, bei denen es stets um konkrete Anwendungen bzw. Anfragen ging. Von daher liegt erfreulicherweise eine intensive Messenachbereitung vor uns.“
Besucherstruktur zeigt: Auf der LASYS war ein fachlich qualifiziertes Publikum
Die FachbesucherInnen der LASYS haben auch in diesem Jahr eine hohe Entscheidungskompetenz. Rund ein Fünftel gehört zur Geschäfts-/Unternehmens- und Betriebsleitung. Genauso viele sind in der Entwicklung tätig und etwa 16 Prozent in der Fertigung, Produktion und Qualitätskontrolle. Ein sehr großer Anteil von 81 Prozent sind bei Einkaufsentscheidungen ausschlaggebend, mitentscheidend oder beratend tätig. Drei Viertel davon haben eine konkrete Investitions- bzw. Kaufabsicht, 25 Prozent der Kaufwilligen plant mehr als 200.000 € zu investieren.
Knapp drei Viertel des Fachpublikums stammen aus der Industrie und setzen bereits Laser bzw. Lasersysteme im eigenen Unternehmen ein – nutzen also die LASYS als Plattform, um sich über die Entwicklung ihrer Systeme und weiteren Applikationsmöglichkeiten zu informieren. Zu den am stärksten vertretenen Branchen zählen der Maschinenbau, Automobilbau, Anlagen- und Apparatebau, die Metall- und verarbeitende Industrie sowie die optische Industrie. Das Fachpublikum interessierte sich für alle relevanten Applikationen und Lasersysteme (für die Oberflächenbearbeitung, das Trennen, das Beschriften und Markieren und das Fügen). Außerdem standen Lasersysteme für die additive Fertigung sowie Strahlquellen im Fokus. Insgesamt sind sich die BesucherInnen der LASYS einig: Mit der Note 2,3 wird die LASYS im Schnitt gut bewertet. 85 Prozent der FachbesucherInnen planen bereits jetzt, die LASYS 2024 zu besuchen.
Attraktives Rahmenprogramm findet großen Anklang
Das Fachpublikum profitierte zudem vom Rahmenprogramm der LASYS: Ergänzend zum Angebot der Ausstellenden bot es an allen drei Tagen umfassenden Know-how-Transfer. Dazu gehörten traditionell die Stuttgarter Lasertage, die am 21. und 22. Juni stattgefunden haben. Prof. Dr. Thomas Graf, Direktor des Instituts für Strahlwerkzeuge (IFSW) der Universität Stuttgart und Veranstalter des Kongresses, sagt: „Die 11. Stuttgarter Lasertage sind sehr erfolgreich zu Ende gegangen. Das spannende Tagungsprogramm zusammen mit dem angenehmen Ambiente der LASYS bot den rund 180 Konferenzteilnehmern aus Forschung, Entwicklung und Industrie sowohl den passenden Rahmen als auch den erforderlichen Raum für ein aktives und erfolgreiches Networking – nicht zuletzt auch auf der traditionellen SLT-Abendveranstaltung am Institut für Strahlwerkzeuge an der Universität Stuttgart.“
Darüber hinaus boten zum Beispiel das EPIC Meeting zur Strahlformung, die Expertenvorträge der Wissenschaftlichen Gesellschaft Lasertechnik e.V. (WLT) und das Solution Center mit sechs beteiligten Laserinstituten viele Möglichkeiten zum Wissenstransfer zwischen Forschung und Industrie. Das stark praxisorientierte Fachforum „Lasers in Action“ direkt in der Messehalle und mehrere fachspezifische Workshops und Seminare rundeten das Rahmenprogramm ab.
Die nächste LASYS findet vom 04. bis 06. Juni 2024 auf dem Stuttgarter Messegelände statt.
Nähere Informationen zur LASYS unter www.messe-stuttgart.de/lasys
]]>Besonders erwähnenswert, ist die Erweiterung der DAkkS-Akkreditierung des Kalibrierlaborbereichs.
Damit können nach Norm ISO/IEC17025:2018, als weltweit anerkannter gültiger Standard, rückführbare Kalibrierungen angeboten werden.
Die neuen Messgrößen sind:
Kontakt:
GIGAHERTZ Optik Vertriebsgesellschaft für technische Optik mbH
An der Kälberweide 12
82299 Türkenfeld
E-Mail: info(at)gigahertz-optik.de
Internet: www.gigahertz-optik.de
ANFF-Q serves a wider scope of applications than normal R&D facilities and provides a safe, IP neutral environment where the clients’ designs and developments remain their property. The MPO 100 will be used for target applications in micro-optics, microfluidics, micro needles, and diffractive optical elements. The system will be the third Heidelberg Instruments machine after the MLA 150 and a µPG101, which are already in place at ANFF-Q.
“The MPO 100 was officially introduced into the market end at the end of January in 2022. The purchase of the tool by ANFF-Q was one of the first orders and confirms the customer-oriented development of the system. We are looking forward to a close collaboration with ANFF-Q”, says Dr. Benedikt Stender, CEO of Multiphoton Optics.
During the tender, Multiphoton Optics was supported by Heidelberg Instruments’ local distributor Nano Vacuum, which have already worked closely on several successful projects with ANFF-Q. “We are thrilled to be able to bring the first MPO 100 system to Australia. With over 25 years of experience in the nanofabrication industry, Nano Vacuum is always eager to see the conception of innovative tools and cutting-edge technologies in the research space!”, says Dr. Ava Faridi, Product Manager at Nano Vacuum.
Kontakt:
Multiphoton Optics GmbH
Friedrich-Bergius-Ring 15
D-97076 Würzburg
E-Mail: press(at)multiphoton.de
Internet: https://multiphoton.net
AALEN Mit laserbasierten, additiven Fertigungsverfahren können Bauteile in konkurrenzloser Geometriefreiheit hergestellt werden, was die Gestaltung neuartiger, kompakter E-Antriebe für die Mobilität der Zukunft ermöglicht. Höchste Leistungsfähigkeit bei geringem Stromverbrauch wird dabei prinzipiell durch mikroskopisch dünne Luftspalte in den weichmagnetischen Komponenten erreicht, welche Wirbelstrombarrieren darstellen und damit Ummagnetisierungsverluste der Weichmagnete reduzieren. Wie solche Mikrohohlstrukturen für maximale Effizienz optimiert und direkt in 3D-gedruckten Antriebskomponenten hergestellt werden können, wird im Rahmen eines Projekts erforscht, an dem das LaserApplikationsZentrum (LAZ) der Hochschule Aalen beteiligt ist.
Mehrere Forschungsgruppen – ein Ziel
Bis Ende des Jahres läuft noch das Projekt „ADDSUB“ unter dem Dach des „InnovationsCampus Mobilität der Zukunft“ (ICM) und wird mit rund 400 000 Euro durch das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg gefördert. Darüber hinaus forscht im Rahmen des Projekts „ADDSUB“ das Institut für Materialforschung (IMFAA) der Hochschule Aalen an der Charakterisierung der Magnete, die in diesem Antrieb der Zukunft zum Einsatz kommen sollen. Weitere Projektpartner sind das Institut für Strahlwerkzeuge (IFSW) von der Universität Stuttgart sowie das Institut für Produktionstechnik (wbk) vom Karlsruher Institut für Technologie. Gemeinsames Ziel dieser Forschungsgruppen ist, die Effizienz einer sogenannten Transversalflussmaschine – ein Elektromotor für Radnabenantriebe – durch interdisziplinäre, technologische sowie wissenschaftliche Zusammenarbeit wesentlich zu steigern.
Der Projektname „ADDSUB“ steht dabei für eine optimierte Herstellung anforderungsgerechter, weichmagnetischer Komponenten für E-Maschinen durch Kombination additiver und subtraktiver Laserprozesse. Vereinfacht gesagt baut man im 3D-Druck-Verfahren ein Teil auf und bringt gleichzeitig während des Aufbauprozesses mit dem Laser durch subtraktiven Abtrag ganz gezielt mikroskopisch kleine Hohlräume hinein, um dadurch die spätere Leistung des Motors zu erhöhen. All dies passiert in einer einzigen Maschine. Das Team des LaserApplikationsZentrum hat nun innerhalb des Projekts einen wichtigen Meilenstein erreicht, indem es gelang, eine multifunktionale Pulver-Prozesskammer an der Hochschule Aalen zu entwickeln und aufzubauen.
Modulare, transportable und hochdichte Kammer entwickelt
Zur Vermeidung negativer Oxideinflüsse verfügt diese kompakte Pulver-Prozesskammer über einen mit Inertgas befüllbaren, hochdichten Bauraum mit dazugehöriger Schutzgasumwälzung und Gasreinigung. David Kolb, wissenschaftlicher Mitarbeiter am LAZ, zählt die weiteren Vorteile der Konstruktion auf: „Es handelt sich um ein vollumfassendes Pulverbett für die additive Fertigung verschiedenster industrieller und kommerzieller Werkstoffe. Wir können aber auch neue Materialien darin verarbeiten.“ Darüber hinaus sei die Prozesskammer nicht nur für die additive Fertigung, sondern auch für die Kombination aus additiver und subtraktiver Fertigung geeignet.
Das Konzept sei zudem modular und transportabel angelegt und könne an verschiedenen Laseranlagen eingesetzt werden. „Das Laser-Setup kann individuell auf den zu verarbeitenden Werkstoff angepasst werden“, erläutert er weiter. Der Aufbau sei vollautomatisiert, kompakt, flexibel und einfach adaptierbar und verfüge ergänzend über eine Reihe an Sensorik. Ziel des Projekts sei letztlich, mit den Ergebnissen der Forschung die Effizienz von Elektromotoren zu steigern und somit zugleich einen wichtigen Beitrag zur Erhaltung der Wettbewerbsfähigkeit von Herstellern und Zulieferern in Baden-Württemberg zu leisten.
Info: Das LaserApplikationsZentrum (LAZ) der Hochschule Aalen bearbeitet Forschungsthemen rund um die Laserprozesstechnik in den Bereichen des Leichtbaus, der elektrischen Energiespeicher (Batterietechnologie), Elektromobilität und der additiven Fertigung. Mehr Infos gibt es unter: www.hs-aalen.de/laz. Das Institut für Materialforschung (IMFAA) der Hochschule Aalen ist spezialisiert auf die Verarbeitung, Charakterisierung und Prüfung von Werkstoffen und Bauteilen. Der Schwerpunkt liegt auf fortschrittlichen Materialien und Komponenten für ressourceneffiziente Mobilität, erneuerbare Energien, additive Fertigung sowie maschinelles Lernen in der Mikroskopie und Bauteilprüfung. Mehr Infos zur Forschung am IMFAA gibt es unter: www.hs-aalen.de/imfaa. Beide Institute sind in der Fakultät Maschinenbau und Werkstofftechnik der Hochschule Aalen beheimatet und kooperieren unter anderem eng im BMBF geförderten Kooperationsnetzwerk SmartPro (www.smart-pro.org).
Hochschule Aalen
Technik und Wirtschaft
Beethovenstraße 1
73430 Aalen
www.hs-aalen.de
Pressekontakt
Viktoria Kesper | Pressesprecherin
Saskia Stüven-Kazi | Stellvertretende Pressesprecherin
kommunikation(at)hs-aalen.de
Telefon 07361/576-1050 | -1056
]]>
Laser, Magnetresonanztomografie und Halbleiter sind Technologien aus der Quantenphysik, die bereits heute unser Leben prägen. Die Potenziale von Quantentechnologien im Bereich Kommunikation, Computing, Sensorik und Bildgebung beherrschen technologische Zukunftsdebatten. Um diese Potenziale nutzen zu können, werden überregionale Plattformen benötigt, die unterschiedliche Expertisen zusammenführen. „Quantentechnologien haben das Potenzial, Innovationsfelder entscheidend voranzubringen. Um im internationalen Wettbewerb eine Spitzenposition einzunehmen, müssen wir überregionale Strukturen schaffen, um unser Wissen zu teilen“, ist Ministerin Theresia Bauer, Vorsitzende der Stiftungsverwaltung der Carl-Zeiss-Stiftung überzeugt.
Die Photonik stellt im Bereich der Quantenwissenschaft eine Schlüsseltechnologie dar: Photonen dienen als Sensorelemente, Datenübermittler und Quantensysteme. Die Vernetzung aus Quantentechnologien und Photonik bildet das Fundament des Carl-Zeiss-Stiftung Centers QPhoton an den Standorten Jena, Stuttgart und Ulm. Ziel ist die Entwicklung einer neuen Generation von Bildgebungs- und Sensortechnologien, die auf Quantenwissenschaften basieren. Sie sollen höhere Sensitivitäten und eine schnellere Datenverarbeitung ermöglichen. Mit dem neuen Zentrum werden ausgewiesene Standorte miteinander verbunden, um die Quantenphotonik von der Grundlagenforschung bis in die Anwendungen hinein international noch schlagkräftiger aufzustellen. Die jeweiligen Stärken in den Quantentechnologien mit Atomen, Festkörpern, supraleitenden Materialien und Photonen ergänzen sich ideal und erlauben damit auch eine gezielte Förderung des wissenschaftlichen Nachwuchses. „Das CZS Center QPhoton bietet eine vielversprechende Forschungsplattform, um innovative Ansätze im Bereich Bildgebung, Sensorik und Informationsverarbeitung zu vernetzen. Quantenphotonik ist dabei eine der relevantesten Schlüsseltechnologien“, erklärt Minister Wolfgang Tiefensee, Mitglied der Stiftungsverwaltung der Carl-Zeiss-Stiftung.
Im CZS Center QPhoton wird dieses Ziel in drei Innovationsbereichen gemeinsam und standortübergreifend vorangetrieben: Sensortechnologien zur Kontrolle von Quantensystemen, Quantentechnologien für Quanten-Bildgebungsverfahren und Quanten-basierte Informationsverarbeitung.
Im Bereich Sensortechnologien zur Kontrolle von Quantensystemen fokussieren sich die Wissenschaftlerinnen und Wissenschaftler auf die Erforschung und Entwicklung von hochsensitiven Sensoren. „Quantensysteme, wie sie gegenwärtig schon für Anwendungen z.B. beim Quantencomputing eingesetzt werden, reagieren extrem empfindlich auf äußere Störungen“, erklärt Prof. Dr. Joachim Ankerhold, Standortleiter des CZS Center QPhoton Ulm. Um diese Systeme aber zielgerichtet erforschen und nutzen zu können, müssen sie nicht nur gemessen, sondern auch manipuliert werden. „Hier setzen neueste und zukünftige Verfahren der Sensorik an: sie greifen in die Quantenmechanik der Systeme nur minimal ein, liefern aber auf der anderen Seite hochpräzise Informationen über deren tatsächliche Quanteneigenschaften und Quantenzustände“, so Ankerhold weiter. Diese Informationen bilden wiederum die Grundlage zur Kontrolle und gezielten Beeinflussung, beispielsweise bei der Fehlerkorrektur bei Quantencomputern oder der Optimierung von Materialeigenschaften.
Im Bereich Quantentechnologien für Quanten-Bildgebungsverfahren sollen unter anderem erste Anwendungen wie Quantenmikroskopie im Bereich der Lebenswissenschaften entwickelt werden. Durch die genaue Bestimmung der Lage und Beschaffenheit von Molekülen können beispielsweise neue Anwendungen bei der Krebstherapie erforscht werden. „Um quantenmechanische Bits auszulesen, werden meist optische Methoden eingesetzt. Die Güte zu verbessern bzw. Fehlerraten zu reduzieren ist eine Aufgabe in Quantenbildgebungsverfahren. Aber auch andere photoempfindliche Objekte können z.B. durch verschränkte Photonenpaare in unterschiedlichen Spektralbereichen störungsfreier nachgewiesen werden“, erklärt Prof. Dr. Tilman Pfau, Standortleiter des CZS Center QPhoton Stuttgart.
Die Entwicklung von Methoden der Daten- und Signalverarbeitung sowie spezifischer photonischer Hardware für den Einsatz im Quantencomputing steht im Mittelpunkt des Innovationsbereichs Quanten-basierte Informationsverarbeitung. „Einerseits kann die Quanteninformationsverarbeitung genutzt werden, um Rechenaufgaben zu meistern, bei denen selbst modernste Hochleistungscomputer scheitern. Andererseits geht es auch darum, auf neuartige Weise Informationen von physikalischen Systemen zu gewinnen, die mit klassischen Ansätzen nicht zugänglich sind und diese zu übertragen“, erklärt Prof. Dr. Andreas Tünnermann, Standortleiter des CZS Center QPhoton Jena. Zusammen mit dem Jenaer Fraunhofer Institut für Angewandte Optik und Feinmechanik befasst sich das neue Zentrum in diesem Zusammenhang mit der Identifikation konkreter Quantenmehrwerte für die Wirtschaft.
Insgesamt rund 50 Wissenschaftlerinnen und Wissenschaftler sollen im CZS Center QPhoton gemeinsam in den drei Innovationsfeldern forschen. Neben den Forschungskooperationen profitieren diese auch von gemeinsamen Gastvorträgen, Seminaren und Workshops. Standortübergreifende Veranstaltungen und Fortbildungsmöglichkeiten runden das Angebot ab.
Über die Carl-Zeiss-Stiftung
Die Carl-Zeiss-Stiftung hat sich zum Ziel gesetzt, Freiräume für wissenschaftliche Durchbrüche zu schaffen. Als Partner exzellenter Wissenschaft unterstützt sie sowohl Grundlagenforschung als auch anwendungsorientierte Forschung und Lehre in den MINT-Fachbereichen (Mathematik, Informatik, Naturwissenschaften und Technik). 1889 von dem Physiker und Mathematiker Ernst Abbe gegründet, ist die Carl-Zeiss-Stiftung eine der ältesten und größten privaten wissenschaftsfördernden Stiftungen in Deutschland. Sie ist alleinige Eigentümerin der Carl Zeiss AG und SCHOTT AG. Ihre Projekte werden aus den Dividendenausschüttungen der beiden Stiftungsunternehmen finanziert.
Mehr unter: www.carl-zeiss-stiftung.de
]]>
Dotiert ist der VISION Award ist mit einem Preisgeld von 3.000 Euro, das die britische Zeitschrift Imaging and Machine Vision Europe (IMVE) ausgelobt hat.
Registrieren Sie sich unter folgendem Link und reichen Sie Ihr Abstract bis spätestens zum 15. Juli 2022 ein.
Die Bewertungskriterien
Die Vorgaben
Allgemeine Informationen zur Messe: www.messe-stuttgart.de/vision
Nähere Informationen zum VISION Award.
]]>Alle Informationen zur Messe erhalten Sie unter www.messe-stuttgart.de/lasys.
]]>Der Internationale Tag des Lichts verfolgt folgende Ziele:
Teilen Sie über die sozialen Netzwerke Ihre Bilder, die ausdrücken, welche Rolle das Licht in Ihrem Leben spielt. Nutzen Sie hierfür gerne #IDL2022 und #LightDay2022 und feiern Sie somit gemeinsam die Wissenschaft des Lichts.
Nähere Infos zum International Day of Light erhalten Sie hier.
]]>
Premiere feierte in diesem Jahr die „World of QUANTUM“ als Plattform für die Vernetzung von Forschenden, Herstellern und Anwendern im Bereich Quantentechnologien. In dem neuen Messebereich wurden erste Anwendungsbeispiele aufgezeigt und aktuelle Forschungsergebnisse dieser Zukunftstechnologie präsentiert.
OptecNet Deutschland e.V. war erneut mit einem Gemeinschaftsstand bestehend aus 18 Mitausstellern vertreten, darunter Unternehmen, Forschungseinrichtungen und Start-ups aus dem Mitgliederkreis. Nach einer langen Zeit ohne persönlichen Austausch bot die Messe die Gelegenheit zur Kontaktpflege mit Kunden und Partnern und den Aufbau neuer Geschäftsbeziehungen. Der bundesweite Dachverband für die Optischen Technologien und Quantentechnologien bietet den Mitausstellern seit vielen Jahren ein Komplettpaket mit Ausstellungsfläche, organisatorischer Betreuung, umfassenden Marketing- und PR-Aktivitäten sowie einem Job-Board für aktuelle Stellenausschreibungen an.
Wir laden die Mitglieder der regionalen Innovationsnetze Optische Technologien herzlich zur Mitausstellung auf der „LASER World of PHOTONICS 2023“ ein! Sollten Sie noch kein Mitglied sein, vermitteln wir Ihnen gerne den Kontakt zu Ihrem regionalen Netzwerk.
Die kommende LASER World of PHOTONICS findet vom 27. bis 30. Juni 2023 auf dem Messegelände München mit begleitendem „World of Photonics Congress“ vom 25. bis 30. Juni 2023 statt. OptecNet Deutschland wird wieder einen Gemeinschaftsstand anbieten. Wir freuen uns über Ihre Kontaktaufnahme!
*Quelle Messezahlen: Schlussbericht der Messe München vom 29. April 2022
]]>Es ist seit längerem bekannt, dass bei der Materialbearbeitung mittels Ultrakurzpulslaser eine Sekundäremission von ionisierenden Strahlung auftreten kann. Dabei wird Röntgenstrahlung aus dem Bearbeitungsplasma emittiert, wobei je nach Bearbeitungsmaterial und den eingestellten Laser- und Prozessparametern eine große Varianz in der Ortsdosisleistung resultiert. In jedem Fall kann aber diese Emission eine bestimmte Ortsdosis überschreiten, die als gesundheitsgefährdend angesehen werden muss. Röntgenstrahlung ist potenziell in der Lage, die menschliche Erbinformation (DNA) zu schädigen, was zu langfristigen gesundheitlichen Schäden der bestrahlten Personen führt. Leider ist die Aufmerksamkeit und das Wissen um dieses Thema in Bezug zur UKPL-basierten Materialbearbeitung jedoch noch zu wenig verbreitet, was dazu führen kann, dass das Personal sich unnötigen Gefahren aussetzt und dies, obwohl Deutschland beim Thema Sicherheit mit dem aktuellen Strahlenschutzgesetz und der novellierten Strahlenschutzverordnung sowie den damit verbundenen Grenzwerten Vorreiter gegenüber anderen Ländern innerhalb Europas und der Welt ist.
Der Betrieb einer UKP-Laseranlage in Deutschland kann nach §12 bzw. §17 des Strahlenschutzgesetzes (StrlSchG) anzeige- oder genehmigungspflichtig sein oder auch keines von beidem. Wenn Sie nicht sicher sind, ob Ihr UKP-Laser aus der Anzeige- oder Genehmigungspflicht herausfällt, sollten Sie mit Ihrer örtlichen für das Strahlenschutzgesetz zuständigen Behörde Kontakt aufnehmen. Dabei wird Ihnen mitgeteilt, welcher Sachverhalt vorliegt und welche weiteren Schritte erforderlich sind. Sowohl im Anzeige- als auch Genehmigungsfall sind fachkundige Strahlenschutzbeauftragte (Fachkunde Typ GUKP) und ein Sachverständigengutachten erforderlich. Die Behörde nennt Ihnen einen geeigneten Sachverständigen. Im Genehmigungsfall (insbesondere offene Anlagen) bestehen weitere Anforderungen.
Die eingebrachten Reglungen haben bereits dafür gesorgt, dass i.d.R. die Schutzumhausung geschlossenen Anlagen so gebaut werden, dass die Sicherheit für das Personal gewährleistet ist. Eine Anzeige der entsprechenden Anlagen führt dann zu einem rechtssicheren Betrieb der Anlagen. Für offene UKPL-Anlagen müssen die Betreiber und das jeweilige Personal jedoch ebenfalls geschützt werden, da die ionisierende Strahlung nicht durch eine vorgegebene Schutzumhausung bis unter den Grenzwert abgeschwächt wird.
Analog zum Laserschutz können zum Schutz gegen die laserinduzierte ionisierende Strahlung aus UKPL-Bearbeitungsprozessen bestimmte wirksame technische und organisatorische Maßnahmen für offene Aufbauten abgeleitet werden, auf denen ein funktionierendes Strahlenschutzkonzept aufgebaut werden kann, und dessen Umsetzung das mit den Anlagen hantierende Personal effektiv schützen kann. Als allgemeine Richtlinien sollen die 3A-Regeln „Abschirmung, Abstand & Aufenthalt (Anwesenheit)“ angeführt werden. Nähere Informationen hierzu finden Sie in diesem Flyer.
Die Fachkunde im Strahlenschutz beim Betrieb von UKPL kann in speziellen behördlich anerkannten Fachkundelehrgängen erworben werden: z.B. Technische Akademie Esslingen, SLG Akademie Hartmannsdorf in Zusammenarbeit mit dem Laserinstitut Hochschule Mittweida oder LZH Laser Akademie GmbH in Hannover. In diesem Kurs werden die Teilnehmer u.a. in das Strahlenschutzgesetz und sich daraus ergebenden Grundpflichten eingeführt, lernen die biologischen Wirkungen ionisierender Strahlung und verwendeten Dosisbegriffe kennen und erhalten Hilfestellung für die Organisation des betrieblichen Strahlenschutzes einschließlich der Einteilung und Überwachung von Strahlenschutzbereichen. Weitere Kursinhalte sind die Ermittlung von laserinduzierten Strahlenemissionen sowie beispielhafte Berechnungen zur Dimensionierung von Schutzwänden.
Das Netzwerk „Ultrakurzpulslaser“ (UKPL-Innovationsnetzwerk, www.ukpl-technologie.de ©2022) ist ein Zusammenschluss an Firmen und Forschungseinrichtungen, die sich mit der Thematik der Ultrakurzpulslaser (UKPL) – Bearbeitung von Materialien beschäftigen. Das Netzwerk möchte generelle Aufklärungsarbeit, insbesondere auch an Hochschulen und Universitäten leisten, und an alle appellieren: Wenn Sie mit (offenen) UKPL-Anlagen arbeiten, schützen Sie sich selbst und sorgen Sie auch für Rechtssicherheit beim Betrieb Ihrer Anlagen. Dies ist zwingend erforderlich, da aktuell das Bewusstsein für die entstehenden Gefahren oft noch nicht bei den Betreibern angekommen bzw. unklar ist, welche Schutzmaßnahmen zu ergreifen sind.
Referenzen:
H. Legall et al., Applied Physics A 124, 407 (2018), doi: 10.1007/s00339-018-1828-6
R. Weber et al., Applied Physics A 125, 635 (2019), doi: 10.1007/s00339-019-2885-1
R. Behrens et al., Radiation Protection Dosimetry 183, 361 (2019), doi: 10.1093/rpd/ncy126
P. Mosel et al., Materials 14, 4397 (2021), doi:10.3390/ma14164397
J. Schille et al., Materials 14, 4537 (2021), doi 10.3390/ma14164537
]]>
Nutzen Sie die Vorteile des exklusiven OptecNet Deutschland Gemeinschaftsstands:
Im Rahmen der begleitenden Konferenz unterstützt OptecNet Deutschland zwei N-Tec Talks zu den Themen „Security and Defence“ und „Quantentechnologien“ mit Fachvorträgen und Diskussionsforum. Zahlreiche Experten aus den Mitgliedsunternehmen und Forschungseinrichtungen der regionalen Innovationsnetze Optische Technologien und Quantentechnologien zeigen aktuelle Herausforderungen, Trends und Lösungsansätze auf.
Außerdem veranstaltet OptecBB, Innovationsnetz für die Optischen Technologien in Berlin und Brandenburg, am 7. Juli 2022 einen Workshop zum Thema „Photonik in der Wald- und Forstwirtschaft“. Gemeinsam mit Experten wird der Einsatz photonischer Technologien und vernetzter Sensorik für die Bedarfe der gesamten „Wertschöpfungskette Holz“ diskutiert. Hierbei werden aktuelle Herausforderungen in der Forst- und Holzwirtschaft erörtert sowie bereits bestehende Innovationen und Ideen aufzeigt.
Kommen Sie mit nach Wetzlar - wir freuen uns auf Sie!
Nähere Informationen erhalten Sie hier.
]]>
Prämiert werden insgesamt drei Abschlussarbeiten in den Kategorien Bachelor, Master/Diplom und Dissertation. Den Gewinnerinnen und Gewinnern winken neben einem Preisgeld wertvolle Karrierekontakte in die Photonik- und Optikbranche. Die Preisgelder sind wie folgt gestaffelt:
Kategorie A: Beste Bachelorarbeit (1.000 €)
Kategorie B: Beste Masterarbeit (2.000 €)
Kategorie C: Beste Dissertation (3.000 €)
Wer darf sich bewerben?
Teilnahmeberechtigt sind alle Bachelor-, Master- und Diplomarbeiten sowie Dissertationen (in deutscher oder englischer Sprache), die in den Jahren 2021 oder 2022 an einer deutschen Universität oder Hochschule eingereicht wurden und bis zur Abgabe der Bewerbung als „bestanden” gelten.
Die Fachrichtung spielt dabei keine Rolle: Die Spanne ehemaliger Preistragender reicht von Physik über Optometrie bis Gartenbauwissenschaften. Ausschlagend für die Auszeichnung ist, dass sich die Arbeiten mit innovativen optischen Technologien befassen, die unser Leben und Wirtschaften in Zukunft sicherer, effizienter oder nachhaltiger machen.
Preisverleihung bei den internationalen "Photonics Days Jena"
Die Verleihung des "Applied Photonics Awards" findet im Oktober 2022 im Rahmen der "Photonics Days Jena" statt, einem internationalen Karriere- und Netzwerkevent, veranstaltet von Fraunhofer IOF sowie der Max Planck School of Photonics. Die Gewinnerinnen und Gewinner erhalten dabei die Möglichkeit, ihre Abschlussarbeit vor einem Fachpublikum zu präsentieren. Auch bietet sich die Möglichkeit zur Vernetzung mit Vertreterinnen und Vertretern hochrangiger Unternehmen der Optik- und Photonikindustrie.
Das Fraunhofer IOF schreibt den "Applied Photonics Award" in diesem Jahr bereits zum fünften Mal aus. Die Tradition, auf der der Preis ruht, reicht dabei deutlich länger zurück: Der Award für Angewandte Photonik löste 2018 den "Green Photonics"-Nachwuchspreis ab, der seit 2012 vom Institut verliehen wurde.
Die diesjährige Verleihung des "Applied Photonics Awards" erfolgt erneut mit freundlicher Unterstützung des Vereins Deutscher Ingenieure (VDI) sowie der Unternehmen Active Fiber Systems, JENOPTIK und TRUMPF.
Bewerbungen werden bis zum 30. Juni unter app(at)iof.fraunhofer.de angenommen.
Nähere Informationen erhalten Sie hier.
]]>Anwendungsbeispiel: Flexible Hybridelektronik
Beim Institut für Mikroelektronik Stuttgart (IMS CHIPS) hat sich das hochauflösende Prüfsystem bei der Überprüfung der Oberfläche flexibler Hybridelektronik mittlerweile im praktischen Einsatz bewährt. Im waferbasierten Produktionsprozess werden hier Chips auf eine Polyimidfolie gebettet, überschichtet und mit lithographischer Strukturierung verdrahtet. Zur Qualitätskontrolle müssen die feinen Strukturen des vierlagigen Aufbaus überprüft werden. Gleichzeitig tragen die Ergebnisse dazu bei, den Fertigungsprozess zu evaluieren und zu optimieren. Die 3D-Messdaten der Weißlicht-Interferometer können mit jeder geeigneten Auswertesoftware bearbeitet werden. Besonders einfach geht das mit der speziell für diese Topografie-Messsysteme entwickelten TMS Software, die zahlreiche Möglichkeiten bietet, um die Messergebnisse zügig und ISO-konform auszuwerten. Zudem lässt sich die Software dank guter Dokumentation, offener Struktur und modularen Aufbaus individuell modifizieren. Dadurch bleibt internes Wissen im Unternehmen und auf sich ändernde Anforderungen kann flexibel reagiert werden.
Nähere Informationen unter https://www.polytec.com/de/oberflaechenmesstechnik
Pressekontakt: Christina Petzhold, Tel. 07243-604-3680
]]>Blackbird Robotersysteme hat in einem Testaufbau den intelliSCAN 2D-Scan-Kopf von SCANLAB und HOLO/ORs neueste Entwicklung Flexishaper, ein über den gesamten Leistungsbereich einstellbarer Strahlformer, integriert. Die Bestimmung der notwendigen Strahlformung wurde mithilfe einer Prozesssimulation ermittelt. Die Auslegung des eingesetzten Strahlformers ist das Ergebnis eines kombinierten optischen Designs, das diffraktive optische Elemente (DOE) mit einem Scan-System verbindet. Die Applikationsversuche erlaubten das Verschieben des Geschwindigkeitslimits für fehlerfreies Schweißen von 45 m/min auf bis zu 70 m/min.
Übertragung der Bearbeitungspraxis mit DOEs
Das Schweißen dünner Bleche für Bipolarplatten stellt ähnliche Anforderungen an den Bearbeitungsprozess wie das Laser-Pulverbettschweißen (LPBF). Beide Verfahren erfordern ein Scanner-Bildfeld von bis zu 500 x 500 mm² sowie eine typische Prozessgeschwindigkeit von rund 1 m/s und darunter. Auch beim Verfahren für Metall-3D-Druck wird die Bearbeitungsgeschwindigkeit nicht vom Scan-System oder der Laserleistung limitiert, sondern der Prozess an sich setzt die Grenzen für den Durchsatz. Daher sind die erfreulichen Laserschweiß-Ergebnisse der erste Schritt auch auf dem Weg zur Optimierung von LPBF-Prozessen.
“Unsere gemeinsame Firmenholding schafft den vertrauensvollen Rahmen, der nötig ist, für eine so enge Zusammenarbeit bei der Entwicklung innovativer Lösungen. Nur in einem vergleichbaren Setup kann man zukünftige Marktbedürfnisse offen analysieren und die Ergebnisse gleich in ein konkretes optisches Design umwandeln.“ berichtet Georg Hofner, Sprecher der Geschäftsführung SCANLAB.
“Unsere Schwesterfirmen bieten uns einen Werkzeugkasten, den wir mithilfe unserer Erfahrung und unseres Anwendungswissens in greifbare Vorteile für unsere Zielmärkte und Kunden umsetzen können“ fügt Karl Christian Messer, Geschäftsführer Blackbird Robotersysteme, hinzu.
“Das ist genau die Form von Kooperation, die einen echten Mehrwert erzielt. Die Kombination von unserer Strahlformungs-Expertise mit dem tiefgehenden Marktverständnis unserer Schwesterfirmen.“ ergänzt Israel Grossinger, Inhaber und Leiter von HOLO/OR.
Die nächsten Schritte bestehen darin, das Konzept des Laserschweißens in einem größeren Maßstab zu testen und verschiedene Applikationen parallel zu verfolgen. SCANLABs fiberSYS ist gerade auf die Anforderungen beider Verfahren, LPBF und Schweißprozesse, ausgerichtet. Daher wurde die Integration von DOEs genau in dieses Scan-System, speziell für den Einsatz in Multi-Kopf-Maschinen konzipiert, in die Entwicklungs-Roadmap mit aufgenommen.
Kontakt:
SCANLAB GmbH
Siemensstr. 2a
82178 Puchheim
Tel. 089 800 746-0
E-Mail: presse@scanlab.des.wiesel(at)oth-aw.depresse(at)scanlab.de
Internet: www.scanlab.de
]]>
For more information, please visit www.ksop.kit.edu/msc_program.php
]]>Das Wetzlar Network bietet sich als regionales Innovationsnetz allen Unternehmen und Forschungs-/Bildungseinrichtungen der Photonik-Branche in Hessen und Rheinland-Pfalz als Vernetzungsplattform an. Alle Infos und Kontakt unter:
https://www.wetzlar-network.de/
Den Mitgliedern des Wetzlar Network steht damit künftig das gesamte Leistungsspektrum von OptecNet Deutschland sowie die vielfältigen Angebote der regionalen Innovationsnetzen zur Verfügung. Der Dachverband unterstützt dabei bundesweite und internationale Aktivitäten wie Technologietransfer und Innovationsförderung, Nachwuchsförderung, Marketing und Öffentlichkeitsarbeit sowie internationale Kontakte und Kooperationen.
Die Geschäftsführerinnen und Geschäftsführer der regionalen Innovationsnetze heißen das Wetzlar Network als neues Mitglied herzlich willkommen und freuen sich auf eine gute und enge Zusammenarbeit. „Gemeinsam mit dem Wetzlar Network können wir die Förderung der Photonik als eine Schlüsseltechnologie in Deutschland weiter vorantreiben und die Innovationskraft der Branche stärken“, so die Vorstände von OptecNet Deutschland Dr. Andreas Ehrhardt und Dr. Horst Sickinger.
Ralf Niggemann, Geschäftsführer und Netzwerk-Manager des Wetzlar Network, freut sich sehr über die Aufnahme in den bundesweiten Dachverband OptecNet Deutschland. „Wir sind ein überaus starkes Netzwerk für die optischen Schlüsseltechnologien in unserer Region. Die Zusammenarbeit mit OptecNet Deutschland eröffnet uns und unseren Mitgliedsunternehmen ganz neue Möglichkeiten.“ Der Vorstandsvorsitzende Thorsten Kortemeier ergänzt: „Dass man gemeinsam mehr erreicht als jeder für sich, ist ein offenes Geheimnis. Umso mehr freuen wir uns, mit OptecNet Deutschland künftig einen neuen starken Partner an unserer Seite zu haben.“
OptecNet Deutschland lädt alle Unternehmen und Forschungseinrichtungen der Photonik-Branche zu einem engen Zusammenwirken innerhalb des Verbands und der regionalen Innovationsnetze ein!
Sehr gerne vermitteln wir Ihnen auch den Kontakt zu Ihrem regionalen Innovationsnetz für die Optischen Technologien und Quantentechnologien.
Weitere Informationen und Kontakt unter www.optecnet.de
Der gemeinnützige Fachverband OptecNet Deutschland e.V. vereint acht regionale Innovationsnetze für Optische Technologien und Quantentechnologien und bildet mit rund 500 Mit-gliedern aus Unternehmen und Forschungseinrichtungen den mitgliederstärksten Photonik-Zusammenschluss in Deutschland. Ziel ist die Förderung der Optischen Technologien und der Quantentechnologien in Forschung, Entwicklung und Anwendung, Aus- und Weiterbildung sowie Nachwuchsförderung und Öffentlichkeitsarbeit in Deutschland.
]]>Integrierte Scan-Systeme zur StrahlformungDie Microscan Extension (MSE) könnte man auch als ‚1-µm-Lasermesser‘ bezeichnen. Dieses Scan-Objektiv erweitert einen Scan-Kopf ganz einfach zu einem Mikrospot-Scan-System. Die Kombination aus Galvanometer-Scanner und MSE ermöglicht eine hochpräzise Bearbeitung von Bauteilen: Der Fokusdurchmesser beträgt weniger als 4 μm, im UV-Wellenbereich sogar weniger als 1,5 µm.
Der MultiBeamScanner (MBS) ist eine Scan-Lösung, die parallele Laserschneid-, Bohr- und Abtragprozesse ermöglicht. Durch den Einsatz von diffraktiven optischen Elementen (DOE) wird der einfallende Laserstrahl in eine Konfiguration vieler Teilstrahlen aufgeteilt, damit mehrere Laserspots gleichzeitig in einem Bildfeld arbeiten können. So können entweder mehrere Bauteile gleichzeitig bearbeitet oder komplexe Strukturen schneller erzeugt werden. Durch Kombination der Technologie mit der XL SCAN Lösung kann die Präzision und Geschwindigkeit der parallelen Laserbearbeitung weiter gesteigert werden.
Das komplexeste System ist der FlexibleBeamShaper (FBS). Der FBS ist ein maschinenintegrierbares Strahlformungssystem, das beliebige benutzerdefinierte Strahlverteilungen erzeugen kann. Dank dem elektronisch ansteuerbaren optischen Phasenmodulator ist der FBS quasi ein ‚photonischer Werkzeugkasten‘ mit diversen vordefinierten Strahlformen. Das System mit integriertem Galvo-Scan-Kopf eröffnet Prozessentwicklern neue Möglichkeiten zur flexiblen und effizienten Mikrobearbeitung.
Das Strahljustagemodul ‚Beam Alignment Module‘ (BAM) dient zur aktiven Strahl-Positionsstabilisierung. Ausrichtungsfehler, thermische Effekte von Laserquellen und Schwankungen der Umgebungstemperatur, sowie deren Auswirkungen auf die Strahlposition, können gemessen und korrigiert werden. Somit ermöglicht das BAM auch unter schwankenden Umgebungsbedingungen konstante Prozessergebnisse.
Die gemeinsame Entwicklung geht weiterDie Zusammenarbeit des UKP-Experten Pulsar Photonics mit SCANLAB geht deutlich über die Vertriebskooperation für die genannten Produkte hinaus. Im gemeinsamen Entwicklungsprojekt ‚Photonics Drill Engine‘ (PDE) entsteht ein hoch-dynamisches und variables Multistrahlwerkzeug zur Lasermaterialbearbeitung. Diese Technologie eignet sich insbesondere für den Einsatz in der Elektronikindustrie, beispielsweise zum Laserbohren von Leiterplatten, um die Bohrraten für High-Density-Anwendungen zu steigern. Der gemeinsame Weg hat also gerade erst begonnen.
Kontakt:
SCANLAB GmbH
Siemensstr. 2a
82178 Puchheim
Tel. 089 800 746-0
E-Mail: presse@scanlab.de
Internet: www.scanlab.de
Beide Partner verfolgen einen multidisziplinären Ansatz bei der Entwicklung von Lösungen im Photonic Packaging, der von der Simulation über das Design bis hin zur Montage reicht. Mit dem neuen Quantum X align von Nanoscribe können optische Linsen automatisch an Glasfaserarrays ausgerichtet und auf diese gedruckt werden, sodass eine optimierte optische Kopplung auf PIC-Plattformen erzielt wird. Das 3D-Herstellungsverfahren ermöglicht eine zuverlässige passive Ausrichtung von Chipmodulen. PHIX erweitert damit sein Portfolio an Produktionsleistungen für alle wichtigen PIC-Plattformen um eine hochmoderne Fertigungstechnologie. Sie stellt eine attraktive Option für die hybride Integration von Chip-to-Chip- und Fiber-to-Chip-Modulen dar.
Die über PHIX angebotene Dienstleistung fungiert als Einstieg in die standardisierte LFA-Fertigung und erleichtert den frühzeitigen Zugang zu den dafür relevanten Märkten. Er ist auch attraktiv für Kleinserienanwendungen und für Märkte, in welchen Komponenten in Industriequalität benötigt werden. Mit der Technologie von Nanoscribe bietet PHIX 3D-gedruckte Kollimations-, Fokussierungs- und andere abbildende Optiken für 4-32-Kanal-Faserarrays an. Damit ergänzt PHIX sein Angebot an Spot Size Convertern (SSCs) und kann damit Wellenlängen von 450 bis 1.550 Nanometern und darüber hinaus abdecken. Dies stellt einen wichtigen Meilenstein für die Photonic Packaging-Industrie dar.
Die vollständige Pressemeldung finden Sie hier.
Text und Bild: Nanoscribe
Pressekontakt: Dr. Alena Kirchenbauer, media(at)nanoscribe.com
]]>
2. HORIZON-CL4-2022-SPACE-01-82: Space science and exploration technologies
The proposed areas of contribution are:
A. Development of space-based hyper-spectral camera – either VIS or SWIR. These are relevant for nanosatellites (like CubeSat) for New Space or larger satellites / platforms.
B. Development of generic engines for hyper-spectral imaging that would include capabilities of image/information compression and edge processing on the space camera.
These activities will be based on ELOP’s established reputation that include the development of several generations of high resolution earth observation ISR cameras, the development of some research space payloads such as TAUVEX, a UV space telescope that was developed for Israel space agency (ISA) and Tel-Aviv university, Venus – a super spectral camera that was developed for CNES and ULTRASAT that is currently being developed for ISA and Weizmann research institute for deep space UV research astronomy. See the link below for some commercially available data.
For more information, please click here.
]]>Auf der W3+ Fair netzwerken Sie mit neuen Zielgruppen – über fachliche Grenzen hinweg. Mit wenig Aufwand bekommen Sie einen guten Überblick über Ihre angrenzenden Fachbereiche und aktuelle Infos zu relevanten Querschnittstechnologien.
OptecNet Deutschland hat mit den Organisatoren vereinbart, einen Gemeinschaftsstand anzubieten, auf dem die OptecNet-Mitglieder gemeinsam auftreten können. Melden Sie sich bei Interesse gerne bei Dr. Frank Lerch, optecbb(at)optecbb.de
Das sind die Highlights in Wetzlar:
W3+ Fair - Ihr Zugang zu Neukontakten und New Technologies
Verschaffen Sie sich einen Überblick, finden Sie strategische Partner und entwickeln Sie neue anwendungsorientierte Technologie-Lösungen mit Experten der Schlüsseltechnologien!
Weitere Informationen unter https://w3-messe.de
OptecNet Deutschland e.V., der Zusammenschluss der regionalen Netze Optische Technologien, ist offizieller Partner der W3+ Fair 2022 in Wetzlar.
]]>Kontakt:
LASER COMPONENTS Germany GmbH
Werner-von-Siemens-Str. 15
82140 Olching
E-Mail: info(at)lasercomponents.com
Internet: www.lasercomponents.com
Mit der Vorstandswahl wurde Dr. Andreas Ehrhardt zum Vertreter von OptecNet Deutschland im Deutschen Optischen Komittee (DOK) berufen. Dr. Horst Sickinger nimmt die Funktion des Stellvertreters ein.
OptecNet Deutschland möchte künftig durch die Erweiterung seines Leistungsspektrums neue Mehrwerte für die Verbandsmitglieder generieren und die gemeinnützige Photonik-Förderung weiter ausbauen. Durch die nachhaltige Förderung der Photonik und Quantentechnologien sollen die Wettbewerbsfähigkeit der Branche und die Bedeutung des Photonik-Standorts Deutschland gestärkt werden.
OptecNet Deutschland lädt alle Unternehmen und Forschungseinrichtungen der Branche zu einem engen Zusammenwirken innerhalb des Verbands und den regionalen Innovationsnetzen ein. Gerne vermitteln wir Ihnen den Kontakt zu Ihrem regionalen Netzwerk.
Weitere Informationen unter www.optecnet.de
OptecNet Deutschland e.V., der Zusammenschluss der regionalen Innovationsnetze Optische Technologien, unterstützt bundesweite und internationale Aktivitäten wie Technologietransfer und Innovationsförderung, Nachwuchsförderung, Marketing und Öffentlichkeitsarbeit sowie internationale Kooperationen. OptecNet Deutschland vereint bundesweit Unternehmen und Forschungseinrichtungen und bildet seit vielen Jahren den mitgliederstärksten Fachverband für die Photonik-Branche in Deutschland.
]]>Auch in diesem Jahr verleiht die DGaO wieder den DGaO-Nachwuchspreis für die beste Dissertation und für die beste Masterarbeit des Jahres 2021 auf dem Gebiet der angewandten Optik. Vorschläge zum DGaO-Nachwuchspreis können bis 31. März 2022 unter katja.richter(at)dgao.de eingereicht werden.
]]>Vorteile des neuen VUSCREEN:
Mit dem VUSCREEN sind hellere, kristallklare Inspektionsbilder in natürlicher Farbdarstellung möglich. Der Touchscreen ist robust und mit Handschuhen bedienbar.
Der neue VUSCREEN ist nach einem Firmware-Update auch mit den Vorgängerversionen der MATRIX E3 und des VUMAN E3 kompatibel.
Nähere Informationen zum neuen VUSCREEN und weiteren Produkten erhalten Sie hier.
]]>Die Fördermaßnahme ist Teil der Hightech-Strategie 2025 „Forschung und Innovation für die Menschen“ der Bundesregierung (www.hightech-strategie.de) und des Zehn-Punkte-Programms des BMBF für mehr Innovation in KMU „Vorfahrt für den Mittelstand“. Sie stärkt die Position von KMU in Deutschland im Bereich der Informations- und Kommunikationstechnologien (IKT) und trägt über KMU-getriebene Innovationen zur breiten Nutzung dieser Schlüsseltechnologien bei.
1 Förderziel, Zuwendungszweck, Rechtsgrundlage
1.1 Förderziel
Ziel der Fördermaßnahme ist es, dass innovative KMU Technologien, Produktlösungen, Prozesse und Dienstleistungen in ihrem Unternehmen deutlich über den Stand der Technik hinaus entwickeln, Innovationsvorsprünge sichern und Marktchancen in den Bereichen der IKT nutzen. Insbesondere soll der Transfer neuer wissenschaftlicher Erkenntnisse in die KMU forciert, deren Innovationsfähigkeit zur Umsetzung dieser Erkenntnisse in eigene Forschungsergebnisse und in industrielle Anwendungen gesteigert und so die Wachstums- und Wettbewerbsfähigkeit dieser Unternehmen gestärkt werden.
Zur Untersuchung der Zielerreichung können unter anderem folgende Indikatoren herangezogen werden:
1.2 Zuwendungsweck
Zweck der vorgesehenen Zuwendungen ist die Förderung von industriellen Forschungs- und vorwettbewerblichen Entwicklungsvorhaben von KMU in Deutschland auf dem Gebiet der IKT. Die Förderung soll dadurch einen Beitrag leisten, kleine und mittlere Unternehmen beim Erhalt und dem beschleunigten Ausbau ihrer Technologiebasis zu unterstützen, um Deutschlands Zukunftskompetenzen erfolgreich zu entwickeln. KMU sollen insbesondere zu mehr Forschung und Entwicklung angeregt sowie in die Lage versetzt werden, besser und rascher auf Veränderungen zu reagieren und den erforderlichen digitalen Wandel aktiv mitzugestalten. Zuwendungen des BMBF sollen innovative Forschungsprojekte unterstützen, die ohne Förderung nicht oder nur deutlich verzögert durchgeführt werden könnten.
Die Fördermaßnahme ist ausgerichtet auf das Themenfeld „Informations- und Kommunikationstechnologie“ mit seinen Technologiebereichen
Im Bereich „Software-intensive Systeme (SWS)“ ist Grundlage der Förderung die „Hightech-Strategie 2025“ (https://www.hightech-strategie.de/hightech/de/hightech-strategie-2025/hightech-strategie-2025_node.html). Im Bereich „IT-Sicherheit“ sind die Ziele der Förderung darüber hinaus durch das Forschungsrahmenprogramm der Bundesregierung zur IT-Sicherheit „Digital. Sicher. Souverän.“ festgelegt, im Bereich „Kommunikationssysteme“ durch das Forschungsprogramm Kommunikationssysteme „Souverän. Digital. Vernetzt.“. Die Ergebnisse des geförderten Vorhabens dürfen nur in der Bundesrepublik Deutschland oder dem EWR und der Schweiz genutzt werden.
2 Gegenstand der Förderung
Gegenstand der Förderung sind risikoreiche industrielle Forschungs- und vorwettbewerbliche Entwicklungsvorhaben, die technologieübergreifend und anwendungsbezogen sind. Diese FuE-Vorhaben müssen dem Bereich IKT zuzuordnen und für die Positionierung des Unternehmens am Markt von Bedeutung sein. Wesentliches Ziel der BMBF-Förderung ist die Stärkung der KMU bei dem beschleunigten Technologietransfer aus dem vorwettbewerblichen Bereich in die praktische Anwendung.
Gefördert werden FuE-Vorhaben aus einem breiten Themenspektrum, die ihren Schwerpunkt und ihren Neuheitsanspruch in einem der Technologiebereiche SWS oder KIS haben und auf die Anwendungsfelder/Branchen Automobil und Mobilität, Maschinenbau und Automatisierung, Gesundheit und Medizintechnik, Logistik und Dienstleistungen, Energie und Umwelt sowie Daten- und IKT-Wirtschaft ausgerichtet sind. Bei datengetriebenen Ansätzen ist eine ausreichende Datengrundlage sowohl in quantitativer als auch in qualitativer Hinsicht als wesentliche Voraussetzung anzusehen.
Der Bereich SWS adressiert im Rahmen der grundsätzlich themenoffenen Bekanntmachung insbesondere folgende Themen bzw. Forschungsfragen, die als beispielhaft zu verstehen sind:
Der Bereich KIS adressiert im Rahmen der grundsätzlich themenoffenen Bekanntmachung insbesondere folgende Themen bzw. Forschungsfragen, die als beispielhaft zu verstehen sind:
Kommunikationssysteme
IT-Sicherheit
Weitere Informationen zu den Förderschwerpunkten der Technologiebereiche finden Sie unter http://www.kmu-innovativ.de/ sowie
In der ersten Verfahrensstufe sind Projektskizzen in deutscher Sprache vorzulegen. Diese können beim beauftragten Projektträger des BMBF jederzeit eingereicht werden. Bewertungsstichtage für Projektskizzen sind jeweils der 15. April und der 15. Oktober. Letzter Stichtag ist der 15. Oktober 2025.
Die vollständige Richtlinie erhalten Sie hier.
]]>Anschließend stellte Andrea Toulouse vom Institut für Technische Optik der Universität Stuttgart das SPIE Student Chapter Stuttgart vor. Hier können sich Studierende und Promovierende mit Themenschwerpunkt Optik und Photonik untereinander vernetzen und gemeinsam Aktivitäten zur Karriere-Entwicklung, fachlichen Weiterbildung sowie zur Öffentlichkeitsarbeit und Nachwuchsförderung organisieren. Anschließend wurden mögliche Anknüpfungspunkte mit den Women in Photonics und Photonics BW diskutiert.
Wir bedanken uns herzlich bei den Referentinnen und allen Teilnehmenden für den gelungenen Austausch und freuen uns bereits auf das nächste Treffen!
]]>Doch aus der Herausforderung wurde schnell eine Chance: am 9. Dezember 2020 fand die virtuelle Kick-Off Veranstaltung des Projekts „HyperInno“ mit über 50 Teilnehmenden aus ganz Deutschland statt.
Im Anschluss an zwei inspirierende Fachvorträge diskutierten die Teilnehmerinnen und Teilnehmer aktuelle Herausforderungen und mögliche Lösungsansätze in den Hyperspektraltechnologien. Anschließend definierten sie gemeinsame Schwerpunktthemen, die in den folgenden Workshops näher beleuchtet werden sollten.
Daraus ergaben sich drei Schwerpunktthemen:
In einem Zeitraum von drei Monaten fanden fünf Schwerpunkttreffen mit insgesamt mehr als 210 Teilnehmenden statt. Von hyperspektraler Bildgebung (HSI) in der Chirurgie, über Anwendungen für die Prozessüberwachung hin zu miniaturisierten Hyperspektralsystemen – die Teilnehmenden erhielten vielfältige Einblicke in die Anwendungsmöglichkeiten und Chancen von Hyperspektraltechnologien. Der weitere Austausch und die Kontaktanbahnung erfolgten über den Chat sowie an den virtuellen Kaffeetischen, an denen sich die Teilnehmenden und Referenten in kleinerer Runde austauschen konnten.
Highlight des Projekts war das Innovationsforum am 20. Mai 2021. Rund 100 Teilnehmerinnen und Teilnehmer und 16 Vortragende blickten gemeinsam mit Photonics BW auf die vergangenen Schwerpunkttreffen zurück und setzten durch weitere Fachvorträge neue Impulse. Ergänzt wurden die Informationen durch zahlreiche Möglichkeiten zum (virtuellen) Networking: die Teilnehmenden konnten sich in gezielt gebuchten 1:1 Meetings, über „Business Speed-Dating“ sowie am virtuellen Kaffeetisch vernetzen.
Außerdem konnten bis Mitte Juni 2021 weitere 1:1 Treffen zur gezielten Vernetzung mit anderen Anwendern, Herstellern und weiteren Interessenten vereinbart werden. Somit bot das Projekt „HyperInno“ zahlreiche Möglichkeiten, um langfristige Kontakte zu knüpfen.
OptecNet Themenfeld Hyperspektraltechnologien
Photonics BW folgt gerne dem vielfachen Wunsch nach Fortführung des Innovationsforums Hyperspektraltechnologien (HyperInno) und organisiert seit November 2021 weitere Online-Treffen überregional als „OptecNet Themenfeld“. Damit ist die Teilnahme den rund 500 Mitgliedern von OptecNet Deutschland e.V., des bundesweiten Dachverbands der regionalen Photonik-Netze, vorbehalten. Sofern Sie noch kein Mitglied sind, vermitteln wir Ihnen gerne den Kontakt zu Ihrem regionalen Netzwerk. Vorträge sind jederzeit auch von Nicht-Mitgliedern willkommen, zudem ist eine Probe-Teilnahme zum Kennenlernen des Netzwerks möglich.
Nähere Informationen unter https://photonicsbw.de/hyperinno
Das Projekt „Innovationsforum Hyperspektraltechnologien – HyperInno“ wurde durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert. Ziel ist es, Anwendungen der Hyperspektraltechnologie in der Medizin und Biotechnologie sowie in der industriellen Fertigung und weiteren Bereichen anzuregen und zu fördern. Insbesondere kleine und mittlere Unternehmen (KMU) sollen bei der Erschließung neuer Märkte und Anwendungsfelder unterstützt werden.
]]>Anschließend führten zwei Fachvorträge in das vielseitige Themengebiet ein: Bernd Burchard, Elmos Semiconductor SE und Quantum Technologies UG, stellte das RaQuEl-Projekt - Raumtemperatur-Quantensensorik für die Elektromobilität vor. Ziel des Projekts ist es, das Potential der Raumtemperatur-Quantentechnologien für die mobile Mess- und Sensorik zu erproben und innovative Stromsensoren zu entwickeln.
Im Rahmen des zweiten Vortrags gab Dr. Markus Beckers Einblicke in aktuelle Forschungsaktivitäten im Bereich der Quantentechnologien der Jülich Aachen Research Alliance (JARA).
Nach den beiden Fachvorträgen stellte Linda Fürderer, Messe Stuttgart, die für das kommende Jahr geplante Messe „QT Expo“ vor. Anke Odouli, Messe München, gab darüber hinaus Einblicke in die „World of QUANTUM“, die vom 26. – 29. April 2022 in München stattfindet.
Im Anschluss an die Vorträge hatten die Teilnehmenden Gelegenheit, sich an virtuellen Kaffeetischen in kleinerer Runde auszutauschen.
Wir bedanken uns herzlich bei den Referentinnen und Referenten sowie allen Teilnehmenden für den spannenden Austausch!
Am 16. Februar findet eine Online-Veranstaltung von PHOTONIK DEUTSCHLAND – PHOTONICS GERMANY gemeinsam mit Délégation Générale du Québec à Munich statt. Ziel der Veranstaltung ist der Austausch und die Vernetzung auf (multi-)regionaler Ebene an der Schnittstelle von Quantentechnologien und Photonik, um das gegenseitige Verständnis zu fördern, Kontakte zu knüpfen und ggf. gemeinsame wissenschaftliche und kommerzielle Projekte vorzubereiten.
Die Teilnahme erfolgt auf Einladung von PHOTONIK DEUTSCHLAND - PHOTONICS GERMANY.
Nähere Informationen erhalten Sie hier.
Wir freuen uns auf Sie!
]]>
Kontakt:
Tobias Herrmann
Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße 1
85741 Garching
Deutschland
E-Mail: therrmann(at)mpe.mpg.de
Internet: www.mpe.mpg.de
Seit 2008 ist er an der Universität Stuttgart als Dozent tätig und leitet am Institut für Strahlwerkzeuge (IFSW) den Bereich Verfahrensentwicklung. Im Jahr 2017 habilitierte er zu der Thematik "Prozessgrößen für industrielle Laseranwendungen und deren Auswirkung auf den Anlagenbau". Seit Juli 2021 ist Rudolf Weber am IFSW außerplanmäßiger Professor der Universität Stuttgart.
Kontakt:
apl. Prof. Dr. Rudolf Weber
https://www.ifsw.uni-stuttgart.de/forschung/verfahrensentwicklung/
]]>
Das Bundesministerium für Familie, Senioren, Frauen und Jugend sowie das
Bundesministerium für Bildung und Forschung,
• die Bundesagentur für Arbeit (BA)
• der Bund Deutscher Arbeitgeber (BDA)
• der Bundesverband der Deutschen Industrie (BDI)
• der Bundeselternrat (BER)
• der Deutsche Gewerkschaftsbund (DGB)
• der Deutsche Industrie und Handelskammertag (DIHK)
• die Gleichstellungsministerkonferenz (GFMK)
• die Initiative D21
• die Kultusministerkonferenz (KMK)
• der Zentralverband des Handwerks (ZDH)
… und die Bundeskoordinierungsstelle des Girls’Day rufen gemeinsam dazu auf, beim
Girls’Day – Mädchen-Zukunftstag am Donnerstag, den 28. April 2022 mitzuwirken.
Durch Ihr Engagement beim Girls’Day fördern Sie den weiblichen Nachwuchs in Handwerk, Industrie, Informatik, Wissenschaft und Technik.
Der Girls’Day – Mädchen-Zukunftstag 2022 lohnt sich für beide Seiten und:
• leistet einen wichtigen Beitrag zur Berufs- und Studienorientierung von
Schülerinnen
• eröffnet jungen Frauen neue Perspektiven für ihre berufliche Zukunft
• stellt für Unternehmen den Kontakt zum motivierten Nachwuchs her
Seien Sie (wieder) dabei!
• Präsentieren Sie Ihren Arbeitsalltag für Schülerinnen ab der 5. Klasse!
• Das Radar auf www.girls-day.de bringt Sie und Ihre Angebote mit der Nachfrage interessierter Mädchen zusammen.
• Bieten Sie Angebote vor Ort an. Sollten Pandemie-Auflagen Ihre Veranstaltung erschweren, nutzen Sie die Möglichkeit Online-Angebote einzustellen.
Detaillierte Informationen unter www.girls-day.de
]]>In diesem Jahr wurde die Jahrestagung von PhotonicNet, dem Innovationsnetz Optische Technologien in Niedersachsen, organisiert. Geschäftsführer Thomas Fahlbusch richtete sich mit einem Grußwort an die Teilnehmenden. Anschließend folgte ein virtuelles Grußwort von Dr. Sabine Johannsen, Staatssekretärin im Niedersächsischen Ministerium für Wissenschaft und Kultur.
Die OptecNet Jahrestagung widmete sich aktuellen Technologietrends zu folgenden Schwerpunktthemen:
Vier Keynotes eröffneten das Programm des ersten Veranstaltungstages.
Wolfgang Ebert, Geschäftsführer des Goldsponsors Laseroptik GmbH, stellte eindrucksvoll die Entwicklungen in der Optikbeschichtung für Hochleistungslaser vor.
Dr. Bernhard Ohnesorge, Geschäftsführer der Carl Zeiss Jena GmbH und Vorsitzender des SPECTARIS-Dachverbands Photonik, berichtete anschließend per Liveschaltung über die Ziele und Aktivitäten von PHOTONIK DEUTSCHLAND – PHOTONICS GERMANY, der Allianz von OptecNet Deutschland und SPECTARIS zur Förderung der Photonik und Quantentechnologien als Schlüsseltechnologien in Deutschland
Als Vorgeschmack auf die Fachsession „KI und Photonik“ gab Prof. Dr. Cornelia Denz, Professorin an der Westfälischen Wilhelms-Universität Münster, Einblicke in die Künstliche Intelligenz und deren Funktionsweise sowie Anwendungsmöglichkeiten in der Photonik.
Mit der Formulierung „Quo Vadis?“ stellte Prof. Dr. Joachim Ankerhold von der Universität Ulm die Potenziale und Entwicklungen der Quantentechnologien als bedeutende Zukunftstechnologien vor.
In den Pausen hatten die Teilnehmenden Gelegenheit für persönliches Netzwerken und für den Besuch der Begleitausstellung.
Ob Prozesskontrolle, Sensorik, Lasertechnik oder Medizintechnik – in der Fachsession „KI und Photonik“, moderiert von Thomas Bauer, wurden die Potenziale von Machine Learning und Deep Learning für unterschiedlichste Anwendungsbereiche näher beleuchtet.
Die zweite Fachsession – moderiert von Dr. Horst Sickinger von bayern photonics – widmete sich den vielfältigen Einsatzgebieten der Quantentechnologien. Hierzu zählen u.a. die sichere und verschlüsselte Kommunikation, die Quantensensorik und die Quantenkryptographie.
Die Abendveranstaltung mit einer Ansprache von Dr. Andreas Ehrhardt, Stv. Vorstand, zu 20 Jahren OptecNet Deutschland e.V. rundete den ersten Veranstaltungstag ab. Neben einer Rückschau auf die zahlreichen Veranstaltungen und Projekte des mitgliederstärksten Photonik-Verbunds in Deutschland gab er auch einen Ausblick auf die geplanten Aktivitäten. Die Photonik fungiere als Problemlöser für zahlreiche Entwicklungen und Herausforderungen, wie die Digitalisierung, Elektrifizierung und Dekarbonisierung. Vor diesem Hintergrund betonte Andreas Ehrhardt die große Bedeutung neuer Photonik-Ausschreibungen, welche ein zentrales Handlungsfeld von PHOTONIK DEUTSCHLAND – PHOTONICS GERMANY darstellen.
Im Rahmen der Abendveranstaltung wurde der Kaiser-Friedrich-Forschungspreis an das Team um Dr. Ann-Kathrin Kniggendorf und Prof. Dr. Bernhard Roth vom Hannoverschen Zentrum für Optische Technologien der Leibniz Universität Hannover verliehen. Das Team wurde für seine Forschung zur Detektion von Mikroplastiken und anderen Kontaminanten in Wasser ausgezeichnet. Das auf Optischen Technologien basierende Verfahren wurde im Projekt OPTIMUS entwickelt und ermöglicht die Überwachung von Mikroplastik in Echtzeit. Herzlichen Glückwunsch zu dieser herausragenden Erfindung!
Fünf facettenreiche Keynote-Vorträge bildeten den Auftakt des zweiten Veranstaltungstages, moderiert von Dr. Frank Lerch von OptecBB.
Prof. Dr. Ir. Hugo Thienpont von der Vrije Universiteit Brüssel stellte die Aktivitäten des PhotonHub Europe vor. Dr. Silke Diedenhofen vom Dutch Research Council gab Einblicke in die zahlreichen Institutionen und Aktivitäten im Bereich Photonik in den Niederlanden. Anschließend berichtete Markus Wilkens, Senior Technology Consultant bei VDI Technologiezentrum GmbH, über die neuen Entwicklungen und Ziele des Programms „Horizon Europe“.
Die Keynotes von Prof. Dr. Arno Ruckelshausen zu bildgebenden Sensorsystemen in der Landwirtschaft und Laseranwendungen in der Lithium-Ionen-Batterieherstellung von Johannes Bührle leiteten zu den Fachsessions des zweiten Veranstaltungstages über.
Ob maschinelles Lernen für die Präzisionslandwirtschaft, Unkrautbekämpfung mit dem Laser oder Einsatz von leistungsfähiger Bilderkennung in der AgriPhotonik - die Teilnehmenden der dritten Session, moderiert von Dr. Thomas Fahlbusch von PhotonicNet, ließen sich von spannenden Vorträgen rund um die Photonik in der Agrar- und Forstwirtschaft inspirieren.
Parallel dazu führte Dr. Andreas Ehrhardt von Photonics BW durch die Session Photonik für die Batterieproduktion mit Fachbeiträgen zu Laseranwendungen für Lithium-Ionen-Batterien und die Herstellung von Elektrodenverbindungen und -optimierungen.
Der Abschlussvortrag von Prof. Dr. Richard Hanke-Rauschenbach zur Generierung von Wasserstoff und den Potenzialen der Wasserstoffwirtschaft rundete die diesjährige Jahrestagung ab.
Wir bedanken uns sehr herzlich bei den Referentinnen und Referenten, Ausstellern, Sponsoren und bei allen Teilnehmenden für den interessanten und informativen Austausch rund um die Photonik und Quantentechnologien!
Die 5. OptecNet Jahrestagung wird in Fürstenfeldbruck stattfinden – der Termin wird rechtzeitig bekanntgegeben. Freuen Sie sich erneut auf hochkarätige Fachvorträge, eine Begleitausstellung und den fachlichen Austausch mit Akteuren aus Wirtschaft, Wissenschaft, Forschung und Ausbildung.
Mehr unter www.optecnet.de
Wir bedanken uns ganz herzlich bei den Sponsoren der diesjährigen Jahrestagung:
Gold-Sponsor: Laseroptik GmbH
Silber-Sponsoren: Edmund Optics GmbH, Carl Zeiss AG, Sill Optics GmbH & Co. KG
Bronze-Sponsoren: Thorlabs GmbH, EPIC – European Photonics Industry Consortium
Der Röntgensensor SILIX ist weltweit das erste kommerziell verfügbare Warn- und Steuergerät für Lasermaschinen mit ultrakurzen Laserpulsen. Die Laserpulse erzeugen während der Materialbearbeitung in der Lasermaschine nicht vermeidbare Röntgenstrahlung, die besonders für die Haut gefährlich ist. Mit dem Röntgensensor kann der Fertigungsprozess überwacht und optimiert werden. Der SILIX ist auch ein „Wachhund“ und er erzeugt bei zu starker Röntgenstrahlung Warnsignale, die sofort an die Maschinensicherung weitergeleitet werden. Als in Echtzeit messendes Röntgenspektrometer ist SILIX darüber hinaus auch in der Lage, nicht nur Warn- und Steuerinformationen zu generieren, sondern das gemessene Röntgenspektrum live anzuzeigen.
Der Röntgensensor SILIX ist eine Gemeinschaftsentwicklung von Prof. Dr. Jürgen Nolting von der Fakultät Optik und Mechatronik und Prof. Dr.-Ing. Günter Dittmar. Die ersten Exemplare der Röntgensensoren SILIX sind bereits im praktischen Einsatz in der Industrie und in der Forschung.
Pressemeldung und Bild: © Hochschule Aalen
]]>Kontakt:
Marco Golla
Laser2000 GmbH
Tel.: +49 (0) 8153 405-39
E-Mail: m.golla(at)laser2000.de
Internet: www.laser2000.de
Kontakt:
LASER COMPONENTS Germany GmbH
Werner-von-Siemens-Str. 15
82140 Olching
E-Mail: info(at)lasercomponents.com
Internet: www.lasercomponents.com
Anschließend berichtete Dr. Lisa Wörner über Bose Einstein Kondensate im Rahmen des Projekts BECCAL und in Kooperation mit der NASA an Bord der internationalen Raumstation ISS.
Im Rahmen des dritten Vortrags stellte Prof. Dr. Claus Braxmaier verschiedene Technologien für Hochpräzisionsexperimente im Weltraum am Beispiel COMPASSO vor.
Linda Fürderer von der Landesmesse Stuttgart präsentierte anschließend das Konzept für eine Quantentechnologie-Messe mit Fachkongress „QT Expo“ im Herbst 2022 in Stuttgart.
Im Anschluss an die Vorträge hatten die Teilnehmenden die Möglichkeit, aktuelle Herausforderungen und Lösungsansätze zur Diskussion zu stellen. Außerdem konnten sie sich in kleinerer Runde an „virtuellen Kaffeetischen“ austauschen und mit den Referenten in Kontakt treten.
Wir bedanken uns sehr herzlich bei den Referenten und Teilnehmenden für den spannenden Austausch rund um die vielfältigen Anwendungsmöglichkeiten von Quantentechnologien in der Luft- und Raumfahrt sowie die Inspirationen für Anwendungen auf der Erde.
An dieser Stelle möchten wir auf den bundesweiten Expertenkreis von PHOTONIK DEUTSCHLAND – PHOTONICS GERMANY hinweisen, der am 7. Dezember 2021 in Kooperation mit NMWP.NRW stattfindet. Im Rahmen der Online-Veranstaltung erwarten Sie spannende Fachvorträge rund um das Thema „Quantensysteme –Chancen für neue Geschäftsfelder und Start-ups“.
Die Teilnahme erfolgt auf Einladung von PHOTONIK DEUTSCHLAND – PHOTONICS GERMANY.
Bitte nehmen Sie bei Interesse gerne Kontakt mit uns auf.
Wir freuen uns auf Ihre Teilnahme!
PHOTONIK DEUTSCHLAND – PHOTONICS GERMANY ist die Allianz von OptecNet Deutschland und SPECTARIS zur Förderung der Optischen Technologien und Quantentechnologien. Sie verfolgt das Ziel, die Interessen der Hightech-Branche Photonik auf nationaler und internationaler Ebene gemeinsam zu vertreten und mit abgestimmten Aktivitäten die Innovationskraft und Wettbewerbsfähigkeit der Unternehmen und Forschungseinrichtungen im Land weiter zu stärken.
]]>Highlights der kommenden W3+ Messe in Wetzlar:
Erfahren Sie mehr über die W3+ Fair in Wetzlar.
Hier können Sie sich als Aussteller anmelden.
OptecNet Deutschland e.V., der Zusammenschluss der regionalen Netze Optische Technologien, ist offizieller Partner der W3+ Fair in Wetzlar. Wir freuen uns sehr auf die Zusammenarbeit und laden Sie herzlich als Aussteller oder Besucher zur W3+ Fair ein.
]]>Die große Herausforderung besteht nicht in der Herstellung von Kohlenstoff, sondern darin, ihn aus dem Stern herauszuholen, bevor er zerstört wird. Bei Einzelsternen ist dies sehr schwierig. Sterne in Doppelsternsystemen können miteinander wechselwirken und Masse auf einen Begleiter übertragen (siehe Abbildung). Der Stern, der Teile seiner Masse verliert, entwickelt eine kohlenstoffreiche Schicht nahe der Oberfläche, die bei der Explosion des Sterns als Supernova ausgestoßen wird.
"Es ist vielleicht nicht fair, Doppelsterne für die Treibhausgase verantwortlich zu machen, die die globale Erwärmung verursachen", scherzt Selma de Mink, Mitautorin dieser Studie und Direktorin der neuen Abteilung für stellare Astrophysik am MPA, "aber ist es nicht cool, sich in den Arm zu kneifen und festzustellen, dass der Kohlenstoff in Ihrer Haut wahrscheinlich in einem Doppelstern entstanden ist?"
Astronomen untersuchen auch andere Arten von Sternen, die Kohlenstoff produzieren können, wie zum Beispiel rote Riesen oder Explosionen von Weißen Zwergen. Bisher scheint es jedoch so zu sein, dass massereiche Sterne, und nach dieser neuen Studie insbesondere Doppelsterne, den größten Teil des kosmischen Kohlenstoffs produzieren.
"Unsere Ergebnisse sind ein kleiner, aber wichtiger Schritt zum besseren Verständnis der Rolle massereicher Sterne bei der Erzeugung der Elemente, aus denen wir selbst bestehen", erklärt Robert Farmer. "Bislang haben wir nur eine Art von Wechselwirkung in Doppelsternsystemen untersucht. Es gibt viele andere mögliche Lebenswege für einen Stern, der in der Nähe eines Begleiters geboren wird - und viele andere Elemente, die es zu erforschen gilt." Die in dieser Studie vorgestellten Ergebnisse sind also nur der Anfang einer systematischen Untersuchung der Auswirkungen, die ein naher Begleiter auf die chemische Ausbeute massereicher Sterne hat.
Kontakt:
Max-Planck Institut für Astrophysik
Dr. Selma E. de Mink
Director
Stellar Astrophysics
+49 89 30000 2041
sedemink(at)mpa-garching.mpg.de
Kontakt:
Dr. Hannelore Hämmerle
Presse- und Öffentlichkeitsarbeit
MPI für Astrophysik
MPI für extraterrestrische Physik
Karl-Schwarzschildstr. 1
85748 Garching
Tel: +49 (89) 30 000 3980
Email: hhaemmerle@mpa-garching.mpg.de
Web: www.mpg.de
]]>
Menlo Systems GmbH
Am Klopferspitz 19a
82152 Martinsried
Germany
Phone: +49 89 189166 0
Fax: +49 89 189166 111
E-Mail:m.mei(at)menlosystems.com
Internet:www.menlosystems.com
Euclid besteht dabei aus einem Teleskop mit 1,2m Durchmesser sowie den beiden Instrumenten VIS und NISP. Über die sechsjährige Missionszeit hinweg wird VIS im sichtbaren Licht die Form der Galaxien am Himmel beobachten, während NISP im nah-infraroten Spektralbereich die Entfernung der Galaxien misst. Aus diesen beiden Informationen, der dreidimensionalen Verteilung der Galaxien am Himmel und der durch Gravitation hervorgerufenen minimalen Verzerrung der Form dieser Galaxien, wird das Euclid-Weltraum-Teleskop nach seinem Start Ende 2022 Fragen zur dunklen Materie und der Natur der mysteriösen dunklen Energie (Nobelpreis) untersuchen.
Das MPE ist im Euclid Projekt verantwortlich für die optischen Komponenten des NISP-Instruments sowie für das optische Design und die Modellierung der Bildqualität. Die in NISP verbauten Linsen sind mit Durchmessern von ca. 20cm die größten und bei weitem präzisesten Optiken, die jemals in der zivilen Erforschung des Weltraums zum Start in einem Satelliten vorgesehen waren.
„Wir sind alle froh und glücklich, dass unser NISP die Tests, vor allem die Vibrationstests zur Simulation des Raketenstarts gut überstanden hat,“ sagt Frank Grupp. „Unter realistischen Bedingungen, also unter Nachbildung des kalten, luftleeren Weltraums in der Testkammer, zeigt es auch zusammen mit dem Teleskop ein gutes Bild.“
Nach den erfolgreichen Tests, wird das Nutzlast-Modul bestehend aus dem Teleskop sowie den beiden Instrumenten derzeit verpackt und für den Versand nach Italien vorbereitet. Dort wird es mit dem Service-Modul verbunden, welches die Bordcomputer, die Lageregelung der Raumsonde und die Kommunikation mit den Bodenstationen zur Verfügung stellt.
Ende 2022 wird Euclid dann auf der Spitze einer Sojus-Rakete vom französischen Weltraumbahnhof in Kourou starten und seine Reise zum äußeren Lagrangepunkt 2 des Sonne-Erde-Systems in 1,5 Millionen Kilometer Entfernung zur Erde antreten. „Das waren nun die letzten Bilder die wir von unserem Instrument sehen, bevor Euclid im Weltraum die Augen öffnen wird“, ergänzt Frank Grupp. „Wir sind gespannt und fiebern auf die ersten Bilder des realen Himmels hin.“
Euclid
Dem Euclid-Konsortium gehören Wissenschaftler aus etwa 15 Ländern an, darunter auch Deutschland. Das Max-Planck-Institut für extraterrestrische Physik in Garching, das Max-Planck-Institut für Astronomie in Heidelberg, die Universität Bonn und die Ludwig-Maximilians-Universität in München sind sowohl an der Entwicklung eines Teils der Hard- und Software für eines der beiden wissenschaftlichen Instrumente an Bord (NISP), als auch an der Handhabung der wissenschaftlichen Daten beteiligt.
Kontakt:
Dr. Frank
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
Tel.: +49 (0)89 30000-3956
E-Mail:fgrupp(at)mpe.mpg.de
Internet: www.mpe.mpg.de
Danach arbeitete er am Institut für Technische Optik unter Leitung und Mentoring von Prof. Dr. Hans Tiziani als wissenschaftlicher Mitarbeiter im Bereich Interferometrie, Asphärenmesstechnik und diffraktiver Optik. Er promovierte dort 2004 zum Dr.-Ing. über das Thema der interferometrischen Optikprüfung mit computergenerierten Hologrammen.
2003 folgte ein Wechsel als Post Doc an die Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Lehrstuhl für Mikrooptik (Prof. Dr. Hans Zappe), wo er interdisziplinäre Forschung zwischen Mikrosystemtechnik, Medizin und Optik vorantrieb. Mit Kollegen und Partnern wurden Forschungsprojekte zu durchstimmbarer Optik, Mikrooptik-Charakterisierung, MEMS-basierter endoskopischer OCT sowie im Bereich der physiologischen Vitalparameter-Sensorik durchgeführt.
2007 erfolgte dann ein Wechsel in die Industrie zu SeeReal Technologies nach Dresden, einem Startup, welches holographische 3D-Displaytechnologien entwickelt. Dort verantwortete er die Entwicklung im R&D Bereich sowie die Prototypenentwicklung von neuartigen, holographischen 3D-Displays, welche in Kooperation mit internationalen Partnern vorangetrieben wurde.
Von 2013 – 2021 war er als Entwicklungsleiter bei der SwissOptic AG (Heerbrugg, Schweiz) für kundenspezifische OEM-Produktentwicklungen im Auftrag internationaler Kunden aus der Halbleiterausrüstungsindustrie, der Geodäsie- und Metrologie-Branche tätig und entwickelte gemeinsam mit seinem Team abbildende Präzisionsoptik im DUV- bis NIR-Spektralbereich für Inspektions- und Messobjektive, Luftbildkameras, Systeme für die Lasermaterialbearbeitung sowie die maskenlose UV-Lithographie.
Optische Systemtechnik, angewandte Optik sowie optische Messtechnik, Sensorik und digital-optische Bildgebung sind die Schwerpunkte seiner bisherigen wissenschaftlich-technischen Arbeit. Er fühlt sich einem ganzheitlichen Ansatz, einer ausgewogenen Symbiose zwischen Grundlagen- und anwendungsorientierter Forschung sowie der damit verbundenen Applikationsrelevanz verpflichtet.
Sehr geehrte Damen und Herren, liebe Optik-Community, liebe Studierende
Ich freue mich sehr über das Privileg und die Verantwortung, das Institut für Technische Optik an der Universität Stuttgart mit seiner über 60-jährigen Tradition und einwandfreien Reputation weiterführen zu dürfen.
Sie sind sicher neugierig und werden sich fragen: Wie geht es mit dem ITO weiter, und welche Schwerpunkte bzw. Forschungsfelder bleiben bestehen oder werden neu besetzt? Nun, da möchte ich Sie einerseits beruhigen und andererseits einen kleinen Ausblick geben.
Die Kontinuität in den angestammten Forschungsfeldern des ITO (von den Grundlagen zur Anwendung, vom Design über Herstellung, Systemintegration und Applikation) ist mir eine Herzenssache. Optische Messtechnik und Sensorik für industrielle und wissenschaftliche Anwendungen, Design und Simulation, jeweils von Nano bis in den Makrobereich sowie verbunden mit einem starken Technologieportfolio zur Strukturierung auf Nano-, Mikro- und Mesoskala stehen für das ITO – dies wird so bestehen bleiben! Wir haben weiter den Anspruch und die Ambition, Ihr erster Ansprechpartner zu sein, wenn es um die Lösung grundlegender oder anwendungsspezifischer Fragestellungen der technischen Optik geht, für den Sie einen wissenschaftlichen Partner benötigen.
Daneben werden neue spannende Felder entstehen, welche sich unter dem Oberbegriff Bereich Digital Reality einordnen lassen. Neue Imaging-Technologien vereinen Digitalisierung, Mensch-Maschine Interfaces und Künstliche Intelligenz für Anwendungen den Bereichen Enterprise und Industrie 4.0. Dafür sind kreative, digital-analog optische Designs und Systemarchitekturen erforderlich.
Alle Studierende mit einer Affinität zur Optik möchte ich ermuntern: Besuchen Sie unsere Vorlesungen, Übungen und Seminare, lassen Sie sich von der faszinierenden Welt der Optik begeistern, schauen Sie sich bei uns um und kontaktieren Sie mich, wenn Sie Interesse an Bachelor-, Master- oder Promotionsarbeiten haben!
Ich möchte es nicht versäumen, Prof. Dr. Alois Herkommer und Dr. Tobias Haist herzlich zu danken. Beide haben hervorragend ad interim die Leitung und Professur in der vorangegangenen Übergangsphase übernommen, was mir den Start sehr erleichtert.
Ich bin erfreut, neugierig und gespannt – insbesondere freue ich mich auf eine gute Zusammenarbeit und den persönlichen Austausch mit Ihnen!
Herzlichst, Ihr
Stephan Reichelt
]]>
Die Fördermaßnahme ist Teil des neuen Forschungsprogramms der Bundesregierung zu Kommunikationssystemen „Souverän. Digital. Vernetzt.“, in dem die gezielte Unterstützung und der Ausbau der Forschung und Entwicklung des Mobilfunks der 6. Generation (6G) in Deutschland ein wesentliches Handlungsfeld zur Umsetzung der strategischen Ziele des Programms darstellt. Aktuelle internationale Entwicklungen zur Erforschung von 6G weltweit weisen darauf hin, dass 6G zu einer Schlüsseltechnologie werden wird. Mit der Erforschung des zukünftigen Kommunikationssystems 6G leistet die Fördermaßnahme einen wesentlichen Beitrag zur Entwicklung der Zukunftskompetenzen Deutschlands im Rahmen der Hightech-Strategie 2025 der Bundesregierung. Da Kommunikationssysteme integraler Bestandteil und Voraussetzung jedweder Digitalisierung sind, hat das Programm Berührungspunkte zu zahlreichen weiteren laufenden oder geplanten Strategien und Programmen der Bundesregierung und ihren Ressorts. Bezüge bestehen insbesondere zu den Forschungsprogrammen zur IT-Sicherheit, zur zivilen Sicherheit, zur Industrie 4.0, zur Medizintechnik, zum autonomen und vernetzten Fahren, zur Mikroelektronik, zu interaktiven Technologien, zu Quantentechnologien sowie zur Zukunft der Wertschöpfung.
Ziel der Fördermaßnahme ist es, einen wichtigen Schritt hin zur technologischen Souveränität Deutschlands und Europas zu gehen. Ein Beitrag zur technologischen Souveränität soll durch den Ausbau der Forschung und Entwicklung zu Schlüsseltechnologien für zukünftige Kommunikationssysteme, Know-how-Ausbau in der Wirtschaft, Fachkräfteausbildung und Mitgestaltung in der Standardisierung geleistet werden. Anspruch ist es, in diesem Forschungsfeld an der Spitze der bereits anlaufenden internationalen Forschung zu agieren und frühzeitig den Transfer in die Anwendung vorzubereiten. Deutschland und Europa müssen 6G maßgeblich mitgestalten, frühzeitig technologische Grundlagen entwickeln und patentrechtlich schützen und somit das Fundament dafür legen, bei dieser Schlüsseltechnologie mit innovativen und international wettbewerbsfähigen Produkten wichtiger Akteur am globalen Markt zu werden. Mit der Maßnahme soll somit ein wichtiger Beitrag dazu geleistet werden, dass Deutschland in der Weltspitze als Technologieanbieter wieder eine führende Rolle einnimmt. Für die Forschung, die Entwicklung und vor allem den Transfer von 6G im Sinne von technologischer Souveränität ist ein holistischer Systemansatz maßgeblich für den Erfolg. Das 6G-Ökosystem umfasst deshalb alle Technologieebenen, d. h. die Material-, Komponenten-, Mikroelektronik-, Modul- und Netzebenen (einschließlich IT-Sicherheit, Software und künstliche Intelligenz). Das Gesamtsystem muss entwickelt, demonstriert und validiert werden. Ergänzend wird auch die explorative Forschung zu den für 6G relevanten Teiltechnologien unterstützt, um eine besonders hohe Technologietiefe und -diversität zu erreichen. Kooperationen bei der Validierung der 6G-Technologien mit den 6G-Forschungs-Hubs zur Hebung von Synergien sind anzustreben. Eine angemessene Mitarbeit an übergreifenden Fragestellungen in Arbeitsgruppen der 6G-Plattform ist verpflichtend. Damit Deutschland auf gleicher Ebene mit anderen nationalen 6G-Programmen agieren und im Wettbewerb bestehen kann, sind staatliche Zuwendungen erforderlich.
Der Zweck der Zuwendungen ist es, schlagkräftige industriegeführte Verbundprojekte und kompakte Pionierprojekte dabei zu unterstützen, umfassende Forschung zu grundlegenden Technologien für 6G und begleitend zu der dafür notwendigen fasergebundenen Kommunikation (Backbone) vorzubereiten. Dabei sollen Gesamt- bzw. Teilsysteme für 6G in einer üblichen Projektlaufzeit von drei Jahren auf allen erforderlichen technologischen Ebenen erforscht, entwickelt und demonstriert werden. Hierzu ist eine dem Vorhaben angemessene Methodik zu verwenden und es sind die im Projekt erzielten Ergebnisse geeignet zu evaluieren, zu bewerten, zu publizieren und für die weitere Verwertung vorzubereiten.
Mit der Maßnahme soll im Ergebnis erreicht werden, dass wissenschaftliche und wirtschaftliche Akteure aus Deutschland bei der Ausgestaltung der technologischen Grundlagen von 6G im weltweiten Vergleich eine starke Rolle einnehmen. Diesbezügliche Indikatoren sind u. a.: Anzahl von 6G-relevanten Patenten, Anzahl unter deutscher Mitwirkung entstandener Beiträge zu Standardisierungsgremien für 6G, Anzahl der multilateralen Kooperationen zu 6G mit anderen Staaten (die die demokratischen Grundsätze der EU teilen), Wachstum des Forschungs- und Entwicklungs-Personals in der Telekommunikationsbranche, die Berücksichtigung von deutschen Interessen bei der Frequenzregulierung, Erhöhung der Produktvielfalt bzw. Herstellerdiversität für Netzausrüstung („Made in Germany“ oder in Europa gefertigt), Steigerung des Anteils von in Deutschland und Europa hergestellten Netzkomponenten in der deutschen Mobilfunkinfrastruktur (samt Kernnetz) und Anreize zu schaffen, Netzkomponenten in Deutschland zu fertigen. Die Ergebnisse der Fördermaßnahme sollen dabei helfen, die Abhängigkeit bei Schlüsselkomponenten von außereuropäischen Herkunftsländern in Lieferketten weitestgehend zu reduzieren. So soll die Innovations- und Wertschöpfungskette möglichst durchgängig im deutschen und europäischen Raum verbleiben. Damit soll ein wesentlicher Beitrag zur technologischen Souveränität Deutschlands und Europas geleistet werden. Auch die Folgen der Corona-Pandemie sollen für die Unternehmen abgeschwächt werden, um gestärkt aus der Krise hervorzugehen und die Weichen für ein starkes Ökosystem für Netztechnologien zu stellen.
2 Gegenstand der Förderung
Gefördert werden Verbundprojekte,
Gegenstand der Förderung sind innovative Lösungen, mit denen sich in geeigneter Zusammenstellung ganzheitliche Systeme und einzelne erfolgversprechende Themenschwerpunkte für den Mobilfunk der 6. Generation realisieren lassen. Themenschwerpunkte sind z. B.:
Die genannten Themenschwerpunkte sind als Beispiele zu sehen. Weitere nichtgenannte Schwerpunkte mit hoher Relevanz für 6G können ebenfalls adressiert werden.
Als grundlegende Querschnittsthemen sollen von den Verbundprojekten die Themen Security by Design (unter Berücksichtigung möglicher Angriffe mittels Quantencomputern), Nachhaltigkeit, hier insbesondere im Sinne der Energieeffizienz, Datensparsamkeit, Langlebigkeit und ressourcenschonenden Instandhaltung, möglichst geringer Strahlenexposition und möglichst hoher gesellschaftlicher Akzeptanz mit Bezug zu den untersuchten Themenschwerpunkten erforscht werden. Darüber hinaus zählen Normung, Frequenzregulierung und Vorbereitung der Standardisierung zu weiteren wichtigen Querschnittsthemen, die im Kontext der Projektarbeiten themenbezogen adressiert werden müssen.
Um die Wirkkraft der 6G-Initiative zu erhöhen, sind die Verbundprojekte verpflichtet, mit der begleitenden 6G-Plattform zu übergeordneten Fragestellungen wie z. B. Roadmapping, 6G-Architekturdefinitionen, Anforderungsdefinitionen relevanter zukünftiger Anwendungsfälle, Harmonisierung mit internationalen Stakeholdern in der 6G-Entwicklung, Festlegung von 6G-Funkfrequenzen oder zu standardisierungsrelevanten Vorabstimmungen zusammenzuarbeiten. Die Konsortialleiter werden in die Arbeit der 6G-Plattform in geeigneter Form eingebunden. In den Arbeitsplänen aller Verbundprojekte sind entsprechende Ressourcen vorzusehen.
Die Einreichung von Projektskizzen ist bis zum 6. Dezember 2021 möglich.
Die vollständige Richtlinie des BMBF finden Sie hier.
]]>Individuelle Lösungen von opsira für den gesamten Bereich der Lichtmesstechnik erhalten Sie bei:
opsira GmbH
www.opsira.de
Pressekontakt
Uta Vocke
opsira GmbH
Leibnizstraße 20
88250 Weingarten
Telefon: 0049 751 561 890
Email: vocke(at)opsira.de
www.opsira.de
opsira GmbH
Der Optikdesign-Spezialist aus dem schwäbischen Weingarten ist seit über 20 Jahren erfolgreich am Markt. Eingestiegen als reiner Entwicklungsdienstleister, positioniert sich opsira heute als Full-Service-Anbieter. Zum Portfolio zählen Entwicklungen optischer Systeme, applikationsspezifische Messsysteme sowie High-Tech-Produkte der Photo-, Spektro- und Goniophotometrie. Im opsira-Lichtlabor können Kunden ihre Produkte einer präzisen und umfassenden Prüfung unterziehen. Das Unternehmen hat 20 Mitarbeiterinnen und Mitarbeiter und adressiert schwerpunktmäßig Kunden aus den Segmenten Allgemeinbeleuchtung, Automotive, Signalleuchten und Medizintechnik.
Weitere Informationen: www.hema.de
VISION: Stand 8 D15
Weltweit erstes Xilinx Kria Mainboard für die Industrie
Zahlreiche Demonstratoren am Stand zeigen den flexiblen Einsatz der hema Embedded Vision Plattform – von Ultra-Low-Latency-Anwendungen über die Multisensor-/ Multisignalverarbeitung bis zu einer Gesichtserkennungs-Demo mit dem Xilinx Kria SoM. Hier kommt das neuentwickelte hema Mainboard EVB2 zum Einsatz – das weltweit erste industrietaugliche Mainboard für das Xilinx Kria K26 SoM. Die Verbindung seiner Rechenleistung und Edge-AI-Fähigkeiten und der zahlreichen Video- und Sensorschnittstellen, die über die Embedded Vision Plattform kundenspezifisch konfiguriert werden können, machen die Lösungen zur optimalen Basis für Rundumsicht-, Broadcasting- und Security-Anwendungen in Fahrzeugen, Drohnen und Smart-Citys sowie für sämtliche Machine-Vision- und Robotik-Applikationen.
In sechs Wochen zum seriennahen Prototyp
Kunden profitieren beim Einsatz der Plattform von schneller und kostengünstiger Entwicklung. Der erste Prototyp, bereits mit seriennahen Schaltungen und Komponenten, wird in nur sechs Wochen ab Spezifizierung und Beauftragung gefertigt. So können Unternehmen zum frühestmöglichen Zeitpunkt in die Entwicklung ihrer eigenen Applikationen einsteigen. Das wird durch das Linux-basierte Board-Support-Package und das Xilinx Kria Environment mit zahlreichen Entwickler-Tools und Software zusätzlich vereinfacht und beschleunigt. Die Vorarbeiten können in der Regel direkt auf der späteren Serienhardware weiterverwendet werden. Die Serienqualifizierung der Hardware übernimmt hema electronic gemeinsam mit Kunden und kümmert sich auf Wunsch auch um Maintenance und Lifecycle-Management für das Produkt.
Über hemɑ electronic
hemɑ electronic GmbH – the embedded vision expert
hemɑ electronic ist ein führender Entwicklungsdienstleister der Elektronikindustrie im Bereich Hardware- und Softwaredesign für Embedded Vision Boards und Systeme für Anwendungen in der industriellen Automatisierungstechnik, Verteidigungs- und Sicherheitstechnik. Von der Beratung und Konzeption über Design (FPGAs, DSPs, Embedded Processors), Qualifizierungen,
Rapid Prototyping und Kleinserienproduktion bis hin zum Lifecycle-Management bietet Ihnen hemɑ electronic alles aus einer Hand. hemɑ electronic unterstützt seine Kunden wirksam dabei, die Weltmarktführer von morgen zu sein.
Kontakt zum Unternehmen (zum Abdruck mit dem Artikel):
hemɑ electronic GmbH
Röntgenstr. 31
73431 Aalen, Germany
Tel. +49 7361 / 9495-0
info(at)hema.de
www.hema.de
Ansprechpartner für die Presse:
Sina Schuh
Assistenz der Geschäftsleitung
Tel. +49 7361 / 9495-20
s.schuh(at)hema.de
www.hema.de
]]>
Wir freuen uns über Ihre Anmeldung unter https://www.surveymonkey.de/r/HyperInno211118
www.photonicsbw.de
]]>Das Glass Printing Explorer Set ist besonders geeignet für Anwendungen, die eine hohe Temperaturbeständigkeit in Kombination mit mechanischer und chemischer Stabilität sowie optischer Transparenz erfordern. Die Zwei-Photonen-Polymerisation (2PP) von Quarzglas ist daher vielversprechend für die Erforschung neuartiger Anwendungen wie zum Beispiel in den Bereichen Life Science, Mikrofluidik und Mikrooptik. „GP-Silica hat großes Potenzial für unsere Forschung zur Herstellung komplexer mikrofluidischer Systeme, wenngleich die erforderliche thermische Nachbearbeitung anspruchsvoll ist“, fasst Professor Dr. Nicolas Muller, Assistenz-Professor und Head of Graphical Printing an der School of Engineering and Architecture of Fribourg (Schweiz), die Möglichkeiten des neuen Fotolacks mit Blick auf seine geplanten Forschungsprojekte zusammen.
Das Glass Printing Explorer Set beinhaltet die für die 3D-Mikrofabrikation von Glasstrukturen erforderlichen Materialien und Prozessanleitungen. Im Set enthalten sind der Fotolack GP-Silica sowie Siliziumsubstrate, diverses Druckzubehör und eine detaillierte Verarbeitungsanleitung für einen erfolgreichen Druck. Die Anleitung enthält Empfehlungen und Hinweise zur Vorbereitung des Druckjobs, der empfohlenen Voreinstellung der Druckparameter für das Solution Set Large Features und detaillierte Informationen zum thermischen Nachbearbeitungsprozess. Das Glass Printing Explorer Set ist damit ein guter Einstieg in die hochpräzise additive Fertigung von Glasmikrostrukturen, deren Materialeigenschaften identisch mit jenen von handelsüblichem Quarzglas sind.
Detaillierte Produktinformationen erhalten Sie hier.
]]>Die Ringvorlesung richtete sich in erster Linie an Master-Studierende – darüber hinaus waren auch Doktoranden, interessierte Bacheloranden aus höheren Semestern sowie auch Industrievertreter als Gasthörer eingeladen, ihre Kenntnisse und Perspektiven in der Photonik zu erweitern. Dozenten von Universitäten und Hochschulen hielten Online-Vorlesungen zu aktuellen Themen wie 3D-Druck von Optiken, spezifischer optischer Messtechnik, Laserkunststoffschweißen, Mikrooptischen Systemen uvm.
Die Ringvorlesung Optik wurde im Rahmen der gemeinsamen Arbeitsgemeinschaft Aus- und Weiterbildung von bayern photonics und Photonics BW entwickelt und wird durch die Deutsche Gesellschaft für angewandte Optik unterstützt. Die Durchführung organisierte Prof. Dr. Andreas Heinrich von der Hochschule Aalen.
Für das Sommersemester 2022 ist eine Fortführung der Ringvorlesung mit Ausweitung auf ganz Deutschland und zusätzlicher Unterstützung von OptecNet Deutschland e.V. geplant.
An einer Beteiligung interessierte Dozenten wenden sich bitte mit einem Themenvorschlag direkt an Prof. Heinrich
Das Programm der Ringvorlesung 2021 und weitere Informationen finden Sie unter: www.hs-aalen.de/de/pages/b-eng-optical-engineering_ringvorlesung
]]>Der Alpha ist in verschiedenen modularen Versionen erhältlich. Bereits in der Basisversion wird ein Spektralbereich von 1.35 – 4.5 µm abgedeckt, mit wählbarer Bandbreite von wenigen bis 100 Wellenzahlen. Kernstück jedes Alphas ist das innovative, passiv stabile parametrische Oszillatordesign, das eine extrem kompakte Bauweise von 26 x 43 cm² erlaubt. Als Pumpquelle können sowohl der shot-noise limitierte SI Primus Laser als auch Ultrakurzpulslaser anderer Anbieter verwendet werden. Durch den innovativen modularen Ansatz können mit unabhängig kombinierbaren Standard-Erweiterungs-Modulen höhere Ausgangleistungsleistungen (SI HP) oder verschiedene Spektralbereiche im Sichtbaren (SI VIS), Nah- (SI NIR) oder Mittelinfraroten (SI MIR) adressiert werden. Zudem ist jeder Alpha mit einer besonders nutzerfreundlichen Ethernet- und Wifi Schnittstelle und einem passenden grafischen User-Interface (GUI) ausgestattet.
Der Alpha ist ein Produkt der SI Stuttgart Instruments GmbH. Stuttgart Instruments ist ein in der Physik beheimatetes High-Tech Unternehmen aus Baden-Württemberg, spezialisiert auf vollautomatisierte, breit durchstimmbare Laserquellen für Anwendungen in der Materialforschung, Produktentwicklung und der Prozessanalytik. Alpha-Systeme sind weltweit im Einsatz.
Weitere Informationen unter: www.s-instruments.de oder via E-Mail: alpha(at)s-instruments.de
]]>Das IFSW entwickelt dazu die notwendige laserbasierte Fertigungstechnologie. Durch die Kombination additiver und subtraktiver Prozesse auf ein und derselben Maschine sollen bisher unerreichte filigrane, innenliegende Mikrohohlstrukturen zur Reduzierung von Ummagnetisierungsverlustenin topologieoptimierten weichmagnetischen Komponenten realisierbar werden.
Mit dem additiven ‚Laser Powder Bed Fusion‘-Verfahren können weichmagnetische Komponenten mit konkurrenzloser Gestaltungsfreiheit hergestellt werden. Zur Steigerung von Effizienz, Drehmoment- und Leistungsdichte der E‑Maschinen muss der Volumenanteil des weichmagnetischen Materials gegenüber den Hohlstrukturen maximiert und daher die Breite der isolierenden Hohlräume deutlich unter das derzeit mit additiven Prozessen reproduzierbare Maß von ca. 100 µm verkleinert werden. Dies soll im Vorhaben u.a. dadurch erreicht werden, dass zwischen den additiven Aufbauschritten der einzelnen Materialschichten durch einen geregelten Abtragprozess mittels ultrakurzer Laserpulse hochpräzise Mikrohohlstrukturen erzeugt werden.
Der erste Schritt zur Integration der additiven und subtraktiven Prozesse auf einer Maschine ist am IFSW bereits vollzogen und die Ergebnisse sind beeindruckend [1]. Dieser Lösungsansatz ist aber auch ein gelungenes Beispiel dafür, welches enorme Potential in der Kombination und der Integration verschiedener Laserverfahren in einer Anlage steckt, insbesondere über die bloße Verkettung von laserbasierten Fertigungstechnologien hinaus. Vor diesem Hintergrund kann das ADDSUB-Projekt über neue technologische und wissenschaftliche Erkenntnisse hinaus auch einen wichtigen Baustein liefern für die Vision einer Universalmaschine, welche unterschiedliche Prozesse aus allen sechs nach DIN 8580 definierten Hauptgruppen der Fertigungsverfahren in sich vereint und ideal kombiniert: Dem Produktionssystem der Zukunft [2].
[1] Henn M., Buser M., Onuseit V., Weber R., Graf T.: Combining LPBF and ultrafast laser processing to produce parts with deep microstructures. In: Lasers in Manufacturing Conference 2021, Munich
[2] Graf T., Hoßfeld M., Onuseit V. (2021) A Universal Machine: Enabling Digital Manufacturing with Laser Technology. In: Weißgraeber P., Heieck F., Ackermann C. (eds) Advances in Automotive Production Technology – Theory and Application. ARENA2036. Springer Vieweg, Berlin, Heidelberg. doi.org/10.1007/978-3-662-62962-8_45
Quelle: IFSW Stuttgart
]]>Für diese neue Form der Energieübertragung, die auch als Power-by-Light Technologie bezeichnet wird – entstehen immer mehr Anwendungen, bei denen der Laserstrahl frei durch den Raum geführt oder in eine Glasfaser eingekoppelt wird. Am Ende befindet sich immer eine Photovoltaikzelle, die spezifisch auf die Leistung und Wellenlänge des Lasers angepasst ist. Solche Power-by-Light Systeme bieten Vorteile gegenüber einer konventionellen Energieübertragung mit Kupferkabel, beispielsweise wenn die Anwendung eine galvanisch getrennte Energieversorgung erfordert, Blitz- oder Explosionsschutzaspekte relevant sind, elektromagnetische Verträglichkeit eine Rolle spielt oder eine komplett drahtlose EnergieübertragungRSS benötigt wird.
Den Forscherinnen und Forschern des Fraunhofer ISE ist es nun gelungen, mit einer Galliumarsenid-basierten III-V Photovoltaikzelle erstmals einen Wirkungsgrad von 68,9 % für Laserlicht mit einer Wellenlänge von 858 nm zu demonstrieren. Dies ist der höchste Wert, der jemals für die Umwandlung von Licht in elektrischen Strom erreicht wurde. Möglich wurde dies durch eine spezielle Dünnschichttechnologie, bei welcher die Solarzellenschichten zunächst auf einem Substrat aus Galliumarsenid aufgewachsen werden, das allerdings später im Bauelement wieder entfernt wird. Zurück bleibt die wenige Mikrometer dünne Halbleiterstruktur, die anschließend mit einem hoch reflektierenden Rückseitenspiegel versehen wird.
Die Forschungsgruppe untersuchte Dünnschichtzellen mit Rückseitenspiegeln aus Gold sowie einer optisch vorteilhaften Kombination aus Keramik und Silber, wobei letztere die besten Ergebnisse erzielte. Für die Absorber wurde eine n-GaAs/p-AlGaAs Heterostruktur entwickelt, die besonders geringe Verluste an Ladungsträgern durch Rekombination erreicht.
"Das ist ein beeindruckendes Ergebnis, das zeigt, welches Potenzial in der Photovoltaik auch für industrielle Anwendungen jenseits der Solarstromgewinnung steckt", freut sich Institutsleiter Prof. Andreas Bett. Beispiele für die vielfältigen Anwendungen optischer Leistungsübertragung sind die Strukturüberwachung von Windkraftanlagen, die Überwachung von Hochspannungsleitungen, Treibstoffsensorik in Flugzeugtanks oder die optische Versorgung von Implantaten von außerhalb des Körpers, die Überwachung passiver optischer Netzwerke, oder die drahtlose Energieversorgung für Anwendungen im Internet der Dinge.
Die vollständige Pressemeldung des Fraunhofer ISE finden Sie hier.
]]>In seiner Arbeit zum Thema »Metallization of Silicon Solar Cells with Passivating Contacts« hat Dr. Schube ein neuartiges Metalldruckverfahren namens Flextrail für Siliciumsolarzellen der nächsten Generation entwickelt. Dank der deutlich verringerten Breite der Kontakte lassen sich der Silberverbrauch bei der Herstellung dieser Zellen und damit die Produktionskosten verringern. Des Weiteren hat er das sogenannte Intense-Pulsed-Light (IPL)-Verfahren weiterentwickelt, sodass es für die Kontaktierung von Solarzellen mit passivierenden Kontakten eingesetzt werden kann. Dadurch entfallen kostenintensive thermische Ofenprozesse. »Eine der Hauptmotivationen für meine Arbeit ist sicherlich, einen Beitrag zur Energiewende zu leisten«, sagt Jörg Schube.
Die Jury würdigt die "beachtlichen Verbesserungen beim Wirkungsgrad der Solarzellen und bei den Betriebskosteneinsparpotenzialen."
Die vollständige Pressemeldung des Fraunhofer ISE finden Sie hier.
]]>
Kontakt:
LASER COMPONENTS Germany GmbH
Werner-von-Siemens-Str. 15
82140 Olching
E-Mail: info(at)lasercomponents.com
Internet: www.lasercomponents.com
Die Beobachtungen, die jetzt im Early Data Release (EDR) veröffentlich werden, entstanden während der sogenannten „Phase der Kalibration und Leistungsverifizierung“, die etwa von Mitte September bis Mitte Dezember 2019 dauerte. Seitdem scannt das eROSITA-Röntgenteleskop an Bord der SRG-Raumsonde den gesamten Himmel ab und erstellt empfindliche Röntgenkartierungen des gesamten Himmels. Diese Durchmusterung dauert noch bis Ende 2023 an. eROSITA ist das erste fokussierende Röntgenteleskop, das dank seines großen Gesichtsfeldes, seiner hochwertigen Spiegel und seiner empfindlichen CCD-Kameras für Himmelsdurchmusterungen optimiert ist.
Der EDR enthält fast 100 Einzelbeobachtungen von 29 verschiedenen Feldern, die vor dem Start der Himmelsdurchmusterung aufgenommen wurden. Sie decken ein breites Spektrum an astronomischen Objekten ab wie etwa galaktische Neutronensterne oderGalaxienhaufen (siehe ein Beispiel in Abbildung 2) und zeigen das Potenzial und die Vielseitigkeit des eROSITA-Teleskops für Bildgebung, Spektroskopie und die Analyse von veränderlichen Phänomenen.
„Diese ersten eROSITA-Daten umfassend und verständlich zu organisieren, war eine große Herausforderung“, sagt Miriam Ramos-Ceja vom Max-Planck-Institut für extraterrestrische Physik (MPE), die Hauptkoordinatorin des EDR. „Zuerst mussten wir die Daten auf einheitliche Weise bündeln und verarbeiten und sie dann anschließend überprüfen und validieren, um so sicherzustellen, dass wir eine hohe Datenqualität erreichen“. Zusätzlich zu den Daten selbst wird das MPE-geführte Team auch eine spezielle Software zur Verfügung stellen, die zur Reduzierung und Analyse der eROSITA-Daten entwickelt wurde. „Wir haben großen Wert darauf gelegt, alle relevanten Schritte zu dokumentieren, damit Wissenschaftlerinnen und Wissenschaftler auf der ganzen Welt die Daten und die Software einfach nutzen können“, ergänzt Ramos-Ceja.
Unter den Datensätzen, die jetzt veröffentlicht wurden, nimmt die Minivermessung namens "eFEDS" (eROSITA Final Equatorial Depth Survey) einen besonderen Platz ein. eFEDS wurde als Vorschau auf die finale Himmelsdurchmusterung konzipiert und deckt gleichmäßig einen Bereich von etwa 140 Quadratgrad am Himmels ab (etwa 1/300 der All-Sky-Durchmusterung). Dadurch vermittelt es einen Eindruck davon, wie der gesamte extragalaktische Himmel im Röntgenlicht aussehen könnte, wenn eROSITA seine vollständige Himmelsdurchmusterung im Jahr 2023 abgeschlossen hat. In nur vier Tagen eFEDS-Beobachtungen entdeckte eROSITA die erstaunliche Anzahl von fast 30.000 Quellen – mehr als in jedem anderen zusammenhängenden Feld einer Röntgendurchmusterung bis heute gefunden wurde. Die Veröffentlichung umfasst nicht nur die Enddaten, sondern auch mehrere Kataloge der Eigenschaften von eROSITA-Quellen bei Röntgen- und anderen Wellenlängen.
„Wir haben uns nicht mit der Röntgenstrahlung begnügt, sondern die eROSITA-Röntgendaten mit UV-, optischen und Infrarotdaten von vielen verschiedenen Instrumenten sowohl am Boden als auch im Weltraum kombiniert“, erklärt Mara Salvato, eROSITA-Sprecherin und Vorsitzende der Arbeitsgruppe zur Nachverfolgung von eROSITA-Quellen. „Die Koordinaten des eFEDS-Feldes wurden unter anderem deshalb gewählt, weil hier ein großer Satz anderer Beobachtungen von leistungsstarken Teleskopen über den größten Teil des elektromagnetischen Spektrums verfügbar ist. Dieser Schritt ist entscheidend, um die von eROSITA entdeckten Röntgenquellen zu klassifizieren und ihre physikalischen Eigenschaften herauszuarbeiten. Es ist aufregend zu sehen, wie dies alles in eFEDS zusammenkommt. Es ist der Beweis dafür, dass wir dies für alle Quellen tun können, die die vollständige Himmelsdurchmusterung bringen wird – auch wenn wir noch eine Mammutaufgabe vor uns haben.“
Die 35 Arbeiten unter der Leitung des deutschen eROSITA-Konsortiums, die gleichzeitig mit dem EDR veröffentlicht werden, konzentrieren sich hauptsächlich auf diese EDR-Beobachtungen, enthalten aber auch einige spannende Highlights aus der laufenden Himmeldurchmusterung. Die untersuchten Objekte reichen von Sternen und diffuser Emission in unserer eigenen Milchstraße oder der benachbarten Großen Magellanschen Wolke über Aktive Galaktische Kerne (AGN), die supermassereiche Schwarze Löcher beherbergen, bis hin zu riesigen Galaxienhaufen. „Neben der bahnbrechenden Wissenschaft macht es mich wirklich stolz, dass rund 40% der Veröffentlichungen, die die Datenfreigabe begleiten, von Wissenschaftlerinnen geleitet wurden“, fügt Salvato hinzu. „Die eROSITA-Kollaboration wird sich weiter dafür einsetzen, Wissenschaft für alle zugänglich zu machen.“
Natürlich hat COVID-19 auch die Arbeit des eROSITA-Teams erschwert. „Nur sechs Monate nach dem Start der wissenschaftlichen Beobachtungen von eROSITA zwang uns die weltweite Pandemie dazu, unsere Herangehensweise massiv zu verändern“, sagt Andrea Merloni. Sogar der Betrieb des 1,5 Millionen Kilometer entfernten Teleskops musste von zu Hause aus aufrechterhalten werden. „Ich würde gerne glauben, dass die einzigartige Gelegenheit, mit einer brandneuen ‚Entdeckungsmaschine‘ zu arbeiten, vielen von uns geholfen hat, den Fokus zu bewahren – zumindest tat es das für mich“, sagt Merloni. „eROSITA hat uns viele Gründe zum Feiern gegeben, und wir freuen uns alle darauf, bald eine richtige Party zu feiern!“
Kontakt:
Hannelore Hämmerle
Max-Planck-Institut für extraterrestrische Physik
Gießenbachstraße 1
85748 Garching
E-Mail: pr@mpe.mpg.de
Internet: www.mpe.mpg.de
Kontakt:
SCANLAB GmbH
Siemensstr. 2a
82178 Puchheim
Tel. 089 800 746-0
E-Mail: presse@scanlab.de
Internet: www.scanlab.de
Kontakt:
CSEM (Hauptsitz)
Rue Jaquet-Droz 1
2002 Neuchâtel
Schweiz
E-Mail: info(at)csem.ch
Internet: https://www.csem.ch
Henning Schröder vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM) gab einen Einblick in das quanten-photonische Packaging auf Glasbasis und stellte darüber hinaus Chancen für Spin-offs und Start-ups vor.
Anschließend folgte der Fachvortrag „Single Photon Counting in den optischen Quantentechnologien“ von Andreas Bülter von der PicoQuant GmbH.
Im dritten Vortrag stellte Dr. Robert Axmann vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) die DLR-Initiative zur Förderung des Quantencomputing vor. Gefördert durch das Bundesministerium für Wirtschaft und Energie (BMWi) können neue Quantencomputer entwickelt und ein ökonomisches Umfeld bestehend aus Industrie-Unternehmen, Forschungseinrichtungen und Start-ups geschaffen werden.
Thomas Gläßer, Projektleiter bei Photonics BW, stellte abschließend die „Agenda Quantensysteme 2030“ des Programmausschusses „Quantensysteme“ mit zahlreichen beteiligten Akteuren vor. Um die bisherigen Kompetenzen und ökonomischen Vorteile nutzen und ausschöpfen zu können, bedarf es einer langfristigen Förderstrategie. So sollen die Forschungsergebnisse als Grundlage für die Entwicklung neuartiger Produkte und Dienstleistungen im Bereich Quantentechnologien dienen. Für die erfolgreiche Umsetzung ist die Einbindung verschiedenster Akteure aus Industrie, Forschung und Politik von großer Bedeutung. Die Vernetzung dieser Akteure hat sich PHOTONIK DEUTSCHLAND – PHOTONICS GERMANY mit Fachveranstaltungen zu den Quantentechnologien zum Ziel gesetzt und ist entsprechend auch in der Agenda verankert.
Im Anschluss an die Vorträge wurde das weitere Vorgehen diskutiert und abgestimmt. Die nächsten Treffen sind für Herbst 2021 erneut virtuell oder ggf. hybrid geplant. Im Rahmen der kommenden Veranstaltungen sollen die Aktivitäten im Bereich Quantentechnologien aus der Perspektive unterschiedlicher Regionen beleuchtet werden.
Wir freuen uns über das anhaltend große Interesse an der AG Quantentechnologien und bedanken uns bei den Referenten und Teilnehmenden für den spannenden und informativen Austausch!
PHOTONIK DEUTSCHLAND – PHOTONICS GERMANY ist die Allianz von SPECTARIS und OptecNet Deutschland. Mehr unter: www.photonics-germany.de
]]>Die internationale Fachmesse ist zentraler Treffpunkt für innovative Anwendungen aus den Bereichen Photonik und Optik.
Detaillierte Informationen zur Messe erhalten Sie hier.
Gute Nachrichten für Aussteller: Im kommenden Jahr wird es erneut einen German Pavilion mit sehr vergünstigten Teilnahmekonditionen und zahlreichen weiteren Vorteilen geben.
Freuen Sie sich auf:
• einen repräsentativen Messestand mit exponierter Platzierung.
• einen geringen eigenen Organisationsaufwand durch umfassende Betreuung vor und während der Veranstaltung.
• die Partizipation an zahlreichen Begleitmaßnahmen, wie Internetauftritt und Ausstellerflyer
Die ausführlichen Teilnahmeunterlagen erhalten Sie hier.
Die Messe Stuttgart erbittet eine frühzeitige Übersendung der schriftlichen Anmeldung, spätestens bis zum 31. Juli 2021.
Wir freuen uns darauf, Sie als Aussteller auf dem German Pavilion begrüßen zu dürfen!
]]>Das niederländische Institut AMOLF ist weltweit führend in der Erforschung der Interaktionen, Eigenschaften und Funktionen von komplexen Molekülen und Materialsystemen, von nanophotonischen Strukturen bis hin zu multizellulären Organismen. Das Institut entwickelt in seinem Forschungsbereich Nanophotovoltaik neue funktionale Materialien für das Lichtmanagement innerhalb von Solarzellen. So kann durch das „Einfangen“ des Lichts innerhalb von Nanostrukturen, die kleiner sind als die Wellenlänge des Lichts selbst, die Effizienz der Solarzellen erhöht und damit die Kosten für die Solarstromerzeugung gesenkt werden.
Das Fraunhofer ISE ist das älteste und größte europäische Solar-Forschungsinstitut und blickt auf 40 Jahre Erfahrung in der klassischen Silicium-Photovoltaik sowie neuartigen und höchsteffizienten Photovoltaik-Konzepten zurück. Die Forschenden des Fraunhofer ISE arbeiten auf dem Gebiet der ganzen Solarzelle konnten schon zahlreiche Wirkungsgradrekorde erreichen.
»Das Projekt MEEt bringt die Kompetenzen zweier Institute zusammen, die sich hervorragend ergänzen. Wir freuen uns sehr auf die Zusammenarbeit, die nicht nur für den Bereich Photovoltaik effizientere Systeme ermöglicht und neue Anwendungen erschließt«, erklärt Dr. Benedikt Bläsi, Gruppenleiter Mikrostrukturierte Oberflächen am Fraunhofer ISE.
Im Forschungsprojekt konzentrieren sich die Partner auf drei Anwendungsfelder: neben der Entwicklung höchsteffizienter Solarzellen sind dies LEDs und optische Sensoren. Bei den LEDs wird z.B. die effiziente und gerichtete Auskopplung des Lichts angestrebt. Die optischen Sensoren sollen sehr energieeffizient und mit wenig Aufwand Rechenoperationen z.B. für die Bilderkennung durchführen können, für die Interferenzeffekte des einfallenden Lichts genutzt werden. Als Basis dienen unterschiedliche Materialien wie Kunststoff-Metall-Kombinationen oder transparente Sol-Gel-Materialien, an deren Oberflächen mittels Nanoimprint-Verfahren Nanostrukturen ausgebildet werden.
Ein weiteres Ziel des Forschungsprojekts ist die Etablierung einer Plattform, um Unternehmen aus anderen Branchen bei der Weiterentwicklung opto-elektronischer Anwendungen wie Displays, VR-Brillen oder Kameras zu unterstützen.
]]>
Monarch besteht aus dem von Unispectral entwickelten abstimmbaren Fabry-Pérot-Filter (μFPF), der in ein Miniatur-IR-Kameramodul integriert ist und alles in eine schlanke 30-g-Kamera mit 60 x 40 x 14,5 mm passt. Für Betrieb, Steuerung und Anzeige wird die Kamera über ein USB-Kabel entweder mit einem Android-Smartphone [für Handheld-Zwecke], einem PC [für statische Integration] oder einem Hauptprozessor der OEM-Plattform verbunden. Die Kamera erfasst und gibt sofort mehrere detaillierte Einzelband-NIR-Bilder im Spektralbereich der Wellenlängen von 680 nm bis 940 nm aus.
Ariel Raz, CEO von Unispectral, sagte: „Heute führen wir die erste Spektralkamera für den Massenmarkt ein. Mit dem Monarch schafft Unispectral ein brandneues Marktsegment der spektralen IR-Bildgebung für die Landwirtschaft und andere Branchen. Die 30-Gramm-Kamera funktioniert überall in Verbindung mit Android-Smartphones oder PCs. “
In der Landwirtschaft ermöglicht der Monarch die Analyse zahlreicher Indikatoren für die Gesundheit und Qualität von Produkten in der gesamten Lieferkette. Es ermöglicht die Inspektion von Böden, Pflanzen, ganzem Feld und Produkten vor / nach der Ernte. „Unsere Partner haben den Monarch mit hervorragenden Qualitäts- und Ertragsverbesserungen vor Ort getestet“, fügte Raz hinzu.
Die Erschwinglichkeit und Einfachheit der Monarch-Spektralkamera ermöglicht eine breite Anwendung in zahlreichen neuen Anwendungen wie:
Die Monarch-Kamera wird mit einem vollständigen Satz von DLLs und APIs für Entwickler geliefert. Unispectral bietet den Monarch auch als EVK-Bundle an, mit einer grundlegenden Benutzeroberfläche für die sofortige Auswertung und bereit für Feldtests.
Über Unispectral: Unispectral wurde 2016 gegründet und ist ein Pionier in der spektralen Bildgebung. Das Unternehmen bietet eine revolutionäre Reihe von Produkten und Lösungen für die Erfassung spektraler NIR-Bilder, die auf der bewährten abstimmbaren Fabry-Pérot-Technologie basieren.
Das Firmensitz von Unispectral befindet sich in Tel Aviv, Israel. Weitere Informationen finden Sie unter: www.unispectral.com.
Für Produkt- und Anwendungsanfragen und weiteren Informationen wenden Sie sich bitte direkt an: Dr. Dominik Rabus / dominik(at)rabus.tech / +49 17657604173
]]>Ziel der Förderung ist es, die Verfügbarkeit von sicheren, vertrauenswürdigen und nachvollziehbaren IoT-Systemen in wesentlichen Anwendungsbereichen qualitativ zu verbessern und quantitativ zu steigern. Indikator für die Qualität ist unter anderem die relative Anzahl von Sicherheitsvorfällen verglichen mit der Anzahl von Geräten im Feld; Indikator für die Quantität ist unter anderem die Anzahl sicherer IoT-Systeme am Markt. Aufgrund des vorwettbewerblichen Charakters wird ein messbarer Effekt frühestens zwei Jahre nach Abschluss der Förderprojekte erwartet. Mit der Förderrichtlinie soll die vorwettbewerbliche Zusammenarbeit von Unternehmen und Forschungseinrichtungen im universitären und außeruniversitären Bereich intensiviert sowie die Beteiligung kleiner und mittlerer Unternehmen (KMU) an Forschungsprojekten unterstützt werden. Die Intensivierung der Zusammenarbeit lässt sich unter anderem über die Anzahl neuer kontinuierlicher Kontakte zwischen Wirtschaft und Wissenschaft messen. Eine Erhöhung der Anzahl der Kontakte wird bereits mit Veröffentlichung der Förderrichtlinie erwartet.
Mit der Förderung beabsichtigt das BMBF ferner, die Expertise und Wertschöpfung im Bereich der IT-Sicherheit für IoT-Systeme am Standort Deutschland nachhaltig zu stärken und europäische Alternativen bei sicherheitskritischen IT-Komponenten voranzubringen. Dabei fällt den KMU eine wichtige Rolle beim Transfer von Forschungsergebnissen in wirtschaftliche Erfolge zu.
Zweck der Zuwendung ist es, innerhalb einer dem Vorhaben angemessenen Projektlaufzeit von typischerweise drei Jahren, neue Technologien, Methoden und Verfahren für IoT-Sicherheit zu erforschen und zu entwickeln. Dabei ist eine dem Vorhaben angemessene Methodik zu verwenden und sind die im Projekt erzielten Ergebnisse geeignet zu evaluieren, zu bewerten, zu publizieren und für die weitere Verwertung vorzubereiten.
Die Fördermaßnahme ist Teil des neuen Forschungsrahmenprogramms der Bundesregierung zur IT-Sicherheit „Digital. Sicher. Souverän.“ und leistet einen Beitrag zur Umsetzung der Hightech-Strategie 2025 der Bundesregierung sowie der Digitalstrategie „Digitale Zukunft: Lernen. Forschen. Wissen.“ des BMBF
2 Gegenstand der Förderung
Gegenstand der Förderung sind innovative und risikobehaftete Forschungsvorhaben mit dem Ziel, neue Technologien, Methoden und Verfahren für IoT-Sicherheit zu erforschen und zu entwickeln. Mögliche Forschungsthemen sollen den Lebenszyklus von IoT-Geräten ganz oder in Teilbereichen berücksichtigen. Dies umfasst beispielsweise die Entwicklung, Gestaltung und Einführung von IoT-Systemen, weiterhin Fragestellungen des Betriebs und der Instanthaltung von IoT-Systemen sowie Rahmenbedingungen von IoT-Systemen, wie rechtliche Fragen, Standardisierung, Zertifizierung und Normung.
Förderinteressenten müssen sich einem der Schwerpunkte Smart Home, Produktion oder sensible Infrastrukturen zuordnen und die besonderen Herausforderungen sowie eine angepasste Lösungsstrategie im jeweiligen Anwendungsfeld nachvollziehbar herausarbeiten. Die Einreichung zu den jeweiligen Anwendungsfeldern erfolgt gemäß der in Nummer 7.2 genannten Stichtage.
Vernetzte Smart-Home-Geräte kommen im privaten Umfeld in zunehmenden Maße zum Einsatz. Sprachassistenten, smarte Fernseher, Waschmaschinen, Beleuchtung, Schließanlagen und Heizungen sind nur einige Beispiele. Aufgrund der Nutzung in allen Bereichen des Lebens sind die erhobenen und häufig unverschlüsselt übermittelten Daten teilweise sehr persönlich. Diese Daten erlauben zum einen detaillierte Rückschlüsse auf die Gewohnheiten der Anwenderinnen und Anwender, zum anderen kann ein Öffentlichwerden der Daten für die Betroffenen eine unangenehme Verletzung der Privatsphäre bedeuten. Werden IoT-Geräte im Smart Homes gehackt und manipuliert, kann dies schlimmstenfalls den Verlust der Kontrolle beispielsweise über Türschlösser, Rollläden und Heizungen bedeuten. Über schlecht gesicherte IoT-Geräte wie smarte Lautsprecher oder Kinderspielzeug können private Gespräche mitgehört, aufgezeichnet und für unlautere und kriminelle Zwecke missbraucht werden.
Die digitale Vernetzung ist eines der Kernmerkmale von Industrie 4.0 und prägt die industrielle Produktion nachhaltig. Cyber-physische Systeme, digitale Zwillinge und kollaborative Roboter sind nur einige Schlagworte moderner Produktion, die massiv auf vernetzte Geräte im sogenannten Industrial Internet of Things (IIoT) setzt. Durch die Vernetzung ergeben sich neue Angriffsflächen, die gerade im Mittelstand trotz aller Bemühungen zur Absicherung sehr problematisch bewertet werden. Produktionsausfälle aufgrund von Cyberangriffen auf das IIoT können schnell hohe Kosten verursachen. Das Abfließen von Betriebsgeheimnissen über schlecht gesicherte IIoT-Systeme kann im Extremfall bis in die Insolvenz führen. Ein Hacking und Fremdsteuern von kollaborativen Robotern oder anderen Teilen der sogenannten Smart Factory kann ebenfalls kostspielige Produktionsstopps verursachen und schlimmstenfalls Personenschäden zur Folge haben.
Durch die allgegenwärtige Nutzung von IoT-Geräten werden diese zunehmend in Anwendungsfeldern eingesetzt, die besonderer Aufmerksamkeit mit Blick auf IT-Sicherheit bedürfen. So finden vernetzte Geräte beispielsweise vermehrt Eingang in Arztpraxen, Schulen, Supermärkte, private Energieerzeugungsanlagen und Fahrzeuge, deren Manipulation oder Ausfall teils erhebliche Auswirkungen auf Bürgerinnen und Bürger haben kann. Im Zuge der Corona-Pandemie wurden beispielsweise mit den Impfzentren und der Impflogistik sowie vernetzter Labordiagnostik in kurzer Zeit sensible Infrastrukturen auf- und ausgebaut, in denen der Einsatz von IoT-Technologie Effizienzgewinne und eine erhöhte Automatisierung verspricht, gleichzeitig aber auch sensible und personenbezogene Daten ausgetauscht werden. Viele IoT-Infrastrukturen in diesen Anwendungsbereichen fallen formal nicht in die Kategorie der kritischen Infrastrukturen (KRITIS) und sind daher teilweise nur wenig reguliert und überwacht.
2.2 Entwicklung, Gestaltung und Einführung von IoT-Systemen
Das Sicherheitsniveau in IoT-Anwendungsbereichen ist oftmals gering und die eingesetzten Technologien sind sehr heterogen. Es besteht die Anforderung, dass die Kommunikation reibungslos zwischen unterschiedlichen Geräten und Technologien funktioniert. Gleichzeitig besteht Bedarf an sicheren und robusten Architekturen für vernetze, eingebettete Systeme mit geeigneten Schnittstellen. Notwendig ist eine umfassende Integration von Software- und Hardware-Komponenten. Ein wesentlicher Faktor bei der Produktion von IoT-Geräten ist der Kostendruck, auch in weniger preisgetriebenen Anwendungsbereichen. Die zu entwickelnden Technologien sollen entgegenlaufende Anforderungen an Sicherheit und Ressourceneffizienz (Energieeffizienz, Rechenleistung und Speicherbedarf) berücksichtigen. Beispiele für mögliche Forschungsthemen sind:
2.3 Betrieb und Instandhaltung von IoT-Systemen
IoT-Geräte unterliegen je nach Einsatzgebiet sehr unterschiedlichen Anforderungen. Gemeinsam ist jedoch allen Geräten und Komponenten, dass sich das umgebende System dynamisch verändert. Gleichzeitig bleiben Komponenten häufig lange im Feld, sodass die Alterung der Komponenten im IoT (Obsoleszenz) ein wichtiges Thema ist. Das Erkennen von Fehlverhalten sowie angemessene Reaktionskonzepte werden hier besonders notwendig. Beispiele für mögliche Forschungsthemen sind:
Um Sicherheit nachhaltig zu gestalten, müssen Fragen der Standardisierung und Zertifizierung zusammen betrachtet werden. Vorbereitende Maßnahmen zur Normung, Standardisierung und Zertifizierung sollten in den Vorhaben berücksichtigt werden.
Im Rahmen der Förderrichtlinie werden vorzugsweise interdisziplinäre Verbünde, in begründeten Ausnahmefällen auch Einzelvorhaben, gefördert. Die Umsetzbarkeit und wirtschaftliche Verwertung der Vorhaben soll durch eine der Relevanz des Themas angemessenen Beteiligung von Unternehmen in der Verbundstruktur sichergestellt werden. Die skizzierten Lösungen müssen deutlich über den aktuellen Stand der Wissenschaft und Technik hinausgehen. Die Machbarkeit der Lösungen ist vorzugsweise in einem Demonstrator nachzuweisen und geeignet zu evaluieren.
3 Zuwendungsempfänger
Antragsberechtigt sind Unternehmen der gewerblichen Wirtschaft im Verbund mit Hochschulen und/oder außeruniversitären Forschungseinrichtungen. Zum Zeitpunkt der Auszahlung einer gewährten Zuwendung wird das Vorhandensein einer Betriebsstätte oder Niederlassung (Unternehmen) bzw. einer sonstigen Einrichtung, die der nichtwirtschaftlichen Tätigkeit des Zuwendungsempfängers dient, Hochschulen, außeruniversitären Forschungseinrichtungen, in Deutschland verlangt. Die Beteiligung von Start-ups, KMU und mittelständischen Unternehmen wird ausdrücklich erwünscht und bei der Projektbegutachtung positiv berücksichtigt.
KMU oder „KMU“ im Sinne dieser Förderrichtlinie sind Unternehmen, die die Voraussetzungen der KMU-Definition der EU erfüllen.
Der Antragsteller erklärt gegenüber der Bewilligungsbehörde seine Einstufung gemäß der KMU-Empfehlung der Kommission im Rahmen des schriftlichen Antrags.
Das BMBF ist bestrebt, den Anteil der Hochschulen für angewandte Wissenschaften in der Forschungsförderung zu erhöhen sowie die Vernetzung zwischen Forschenden der grundlagenorientierten außeruniversitären Forschungseinrichtungen (insbesondere der Max-Planck-Gesellschaft und der Helmholtz-Gemeinschaft) mit Forschenden an Hochschulen, in Einrichtungen der Fraunhofer-Gesellschaft und aus der Industrie zu stärken. Hochschulen, Fachhochschulen und technische Hochschulen sowie grundlagenorientierte außeruniversitäre Forschungseinrichtungen sind deshalb besonders aufgefordert, sich an den Verbundvorhaben zu beteiligen. Forschungseinrichtungen, die von Bund und/oder Ländern grundfinanziert werden, kann neben ihrer institutionellen Förderung nur unter bestimmten Voraussetzungen eine Projektförderung für ihre zusätzlichen projektbedingten Ausgaben bzw. Kosten bewilligt werden. Zu den Bedingungen, wann eine staatliche Beihilfe vorliegt/nicht vorliegt und in welchem Umfang beihilfefrei gefördert werden kann, siehe Mitteilung der Kommission zum Unionsrahmen für staatliche Beihilfen zur Förderung von Forschung, Entwicklung und Innovation.
7 Verfahren
7.1 Einschaltung eines Projektträgers, Antragsunterlagen, sonstige Unterlagen und Nutzung des elektronischen Antragssystems
Mit der Abwicklung der Fördermaßnahme „IoT-Sicherheit in Smart Home, Produktion und sensiblen Infrastrukturen“ hat das BMBF derzeit folgenden Projektträger (PT) beauftragt:
VDI/VDE Innovation und Technik GmbH
Projektträger Vernetzung und Sicherheit digitaler Systeme
Steinplatz 1
10623 Berlin
Ansprechpartner ist Jan-Ole Malchow
Telefon: 030/310078-5684
Telefax: 030/310078-247
E-Mail: jan-ole.malchow(at)vdivde-it.de
Soweit sich hierzu Änderungen ergeben, wird dies im Bundesanzeiger oder in anderer geeigneter Weise bekannt gegeben.
Vordrucke für Förderanträge, Richtlinien, Merkblätter, Hinweise und Nebenbestimmungen können unter der Internetadresse https://vdivde-it.de/formulare-fuer-foerderprojekte abgerufen oder unmittelbar beim oben angegebenen Projektträger angefordert werden.
Zur Erstellung von Projektskizzen und förmlichen Förderanträgen ist das elektronische Antragssystem „easy-Online“ zu nutzen (https://foerderportal.bund.de/easyonline).
7.2 Zweistufige Verfahren
Das Antragsverfahren ist zweistufig angelegt. In der ersten Verfahrensstufe reicht der Verbundkoordinator eine Projektskizze des Verbundvorhabens beim zuständigen Projektträger ein. Die Entscheidung zur Weiterverfolgung des Projekts wird entsprechend der unten benannten Kriterien auf Grundlage der Projektskizze gefällt. Ausschließlich die zur Weiterverfolgung ausgewählten Vorhaben werden in der zweiten Verfahrensstufe schriftlich zur Einreichung weiterer Antragsunterlagen aufgefordert.
Skizzeneinreichenden wird die Möglichkeit geboten, an einer Informationsveranstaltung teilzunehmen. In dieser werden der Inhalt der Förderrichtlinie sowie Prozess und Verfahren der Antragstellung erläutert. Informationen zu dieser Veranstaltung erhalten Antragsteller online beim Projektträger:
https://www.forschung-it-sicherheit-kommunikationssysteme.de/foerderung/bekanntmachungen/IoT
In der ersten Verfahrensstufe sind dem Projektträger VDI/VDE Innovation + Technik GmbH zunächst Projektskizzen in elektronischer Form vorzulegen. Die Stichtage für die Schwerpunkte sind:
Die Vorlagefrist gilt nicht als Ausschlussfrist; Projektskizzen, die nach dem oben angegebenen Zeitpunkt eingehen, können aber möglicherweise nicht mehr berücksichtigt werden.
Die Projektskizzen sind nach Abstimmung mit allen Verbundpartnern vom vorgesehenen Verbundkoordinator unter Verwendung des elektronischen Antragssystems „easy-Online“ beim BMBF unter der Fördermaßnahme „Sicherheit auf allen IT-Systemschichten“ einzureichen.
Die vollständige Richtlinie finden Sie unter https://www.bmbf.de/foerderungen/bekanntmachung-3642.html
]]>Polytec bietet Anwendungsberatung, Machbarkeitsstudien, Vertrieb und Service für alle DCM-Beleuchtungen exklusiv in Deutschland, Österreich und der Schweiz an.
Weitere Informationen erhalten Sie unter www.polytec.com/dcm
]]>Professor Sir David Payne von der University of Southampton, England, ist der achte Preisträger des Berthold Leibinger Zukunftspreises der gemeinnützigen Berthold Leibinger Stiftung. Damit würdigt die Jury Sir Davids Arbeiten zum Erbium-dotierten Faserverstärker (EDFA) und seine wegweisende Forschung auf dem Gebiet der Faseroptik. Der mit 50.000 Euro dotierte Technologiepreis wird alle zwei Jahre an einen Pionier für herausragende Forschung in der angewandten Lasertechnologie verliehen. Die Preisverleihung findet am 24. September 2021 in Ditzingen statt.
Seit den siebziger Jahren forscht Sir David in vielen Feldern der Photonik, von der Telekommunikation und optischen Sensoren bis hin zu Nanooptik und optischen Materialien. Zusammen mit seinen Kollegen vom Optoelectronics Research Center der University of Southampton erarbeitete er viele bedeutende technische Errungenschaften auf dem Gebiet der optischen Fasertechnologie. Seine Arbeiten hatten einen direkten Einfluss auf die weltweite Telekommunikationstechnik und auch auf viele Gebiete der Optik-Forschung. Er ist insbesondere bekannt für seine Arbeiten zur optischen Verstärkung in Erbium-dotierten Glasfasern für die Telekommunikation und für Hochleistungs-Faserlaser für die Materialbearbeitung.
Beide in der Industrie wichtige Anwendungen haben eine Gemeinsamkeit: Die geringfügige Dotierung, also gezielte Verunreinigung, von Silizium-Glasfasern mit Elementen der Gruppe der Seltenen Erden. Diese Dotierung ermöglicht die effiziente Erzeugung oder Verstärkung von Licht in einer Glasfaser. 1985 entzündete die Gruppe von Sir David mit ihrer Publikation zur Erbium-Dotierung von Fasern mit niedrigem Verlust eine Revolution in der Glasfaser-Forschung. Nicht einmal zehn Jahre später wurde bereits das erste transpazifische Seekabel mit optischer Verstärkung mittels EDFAs verlegt und in den 2000er Jahren erreichten Faserlaser die Kilowatt-Klasse.
Kein globales Internet ohne EDFA
Ein Maß für die Leistungsfähigkeit faseroptischer Netzwerke war anfangs die Anzahl der Telefongespräche, die gleichzeitig über eine einzelne Faser transportiert werden konnten. Und diese Zahlen waren beeindruckend: Viele hunderttausende Gespräche konnten gleichzeitig über eine Faser geführt werden. Mit dem Internet und der Digitalisierung der Kommunikation änderte sich dieses Maß und die Rede war von Gigabits pro Sekunde. Nach einstelligen Zahlen in den 1990er Jahren sind die Rekorde von heute sechsstellig, die Rede ist nun von 100 Terabit pro Sekunde. Dabei ist die Leitungskapazität der optischen Kabel nicht einfach nur per se größer als die von Kupferkabeln, sie lässt sich auch nachträglich enorm steigern, indem mehrere Wellenlängen, jede ein eigener Kanal, durch die gleiche Faser geführt werden, das sogenannte Wellenlängen-Multiplexing. Durch den Einsatz kohärenter Übertragungstechnologien lässt sich die Anzahl der Kanäle noch einmal hochmultiplizieren. Doch für Netzwerkverbindungen länger als 100 Kilometer, denn nach dieser Strecke ist die Signalstärke auf kritische Werte abgesunken, benötigen all diese Technologien eine optische Signalverstärkung und sind daher auf EDFAs angewiesen. Man kann daher sagen, dass EDFAs für eine drastische Kostenreduktion für Bandbreite sorgen, indem sie elektrische Verstärker mit optischem Empfänger und Sender ersetzen, vor allem aber die Notwendigkeit für das Verlegen neuer Kabel reduzieren. Für die datengetriebene Welt von heute sind die niedrigen Kosten der Leitungskapazitäten eine wichtige Voraussetzung.
Mit großer Freude verleiht die Berthold Leibinger Stiftung Professor Sir David Payne den Berthold Leibinger Zukunftspreis. Mit dieser hohen Auszeichnung ist auch die Anerkennung seines unternehmerischen Geistes verbunden. Neben seiner Forschung initiierte er die Kommerzialisierung von Technologien durch die Gründung einer Reihe von Start-ups, genauso wie durch zahlreiche Kollaborationen mit etablierten Technologieunternehmen.
Professor Sir David Payne erwidert: „Der Berthold Leibinger Zukunftspreis ist ein internationaler Preis für exzellente Forschung zur Anwendung und Erzeugung von Laserlicht. Das Optoelectronics Research Centre, welches zu leiten ich die Ehre habe, teilt diese aufregende Mission. Ich fühle mich daher sehr geehrt, diese hoch angesehene Auszeichnung für meine Forschungsarbeiten zu erhalten. Es ist auch die Arbeit von herausragenden Kollegen, mit denen ich das Vergnügen habe, meine Arbeit über die Jahre hinweg zu teilen. Dieser Preis ist auch für sie. Ich stoße hinzu zu einer Gruppe von acht früheren Preisträgern, die sich wie das Who-is-who der Laserpioniere liest, und das erfüllt mich mit Stolz.“
Preisverleihung mit Berthold Leibinger Innovationspreis im September 2021
Der Bekanntgabe des Berthold Leibinger Zukunftspreises folgen die Finalisten des Berthold Leibinger Innovationspreises. Beide Preise werden den Preisträgern am Freitag, 24. September 2021 in Ditzingen überreicht.
Für mehr Informationen über die Preise und die Stiftung: www.leibinger-stiftung.de
Im Rahmen der Veranstaltung finden zusätzlich offene Podiumsdiskussionen rund um modulare Entwicklung und interaktive Führungen durch Entwicklung und Produktion bei hema statt. Einen weiteren Themenkomplex stellt die Schweißprozess-Visualisierung dar. In den Gesprächen dazu erfahren Interessenten, wie sie in Ihrer konkreten Anwendung mit intelligenten Kameras die Qualität ihrer Produkte verbessern und die Effizienz ihrer Produktionsprozesse steigern können. Alle Gespräche werden individuell vereinbart und durchgeführt, um optimal auf die spezifischen Fragen und Herausforderungen der Kunden reagieren zu können.
Detaillierte Informationen zur Veranstaltung erhalten Sie unter www.hema.de/vision-days
hemɑ electronic GmbH – the embedded vision expert
hemɑ electronic ist ein führender Entwicklungsdienstleister der Elektronikindustrie im Bereich Hardware- und Softwaredesign für Embedded Vision Boards und Systeme für Anwendungen in der industriellen Automatisierungstechnik, Verteidigungs- und Sicherheitstechnik. Von der Beratung und Konzeption über Design (FPGAs, DSPs, Embedded Processors), Qualifizierungen, Rapid Prototyping und Kleinserienproduktion bis hin zum Lifecycle-Management bietet Ihnen hemɑ electronic alles aus einer Hand. hemɑ electronic unterstützt seine Kunden wirksam dabei, die Weltmarktführer von morgen zu sein.
]]>Barbara Hopf spezialisierte sich bereits während ihres Ingenieurstudiums an der Fachhochschule München auf dem Gebiet der Fasertechnologie. Nach ihrer Promotion im Jahr 2019 stieg sie als Entwicklungsingenieurin bei LASER COMPONENTS ein, wo ihr Anfang 2021 die Leitung des Bereichs Produktentwicklung übertragen wurde. Ihr Verantwortungsbereich umfasst neben der Fasertechnologie auch die Neuentwicklung und Optimierung von optoelektronischen Komponenten wie Lasermodulen oder Detektoren.
Kontakt:
LASER COMPONENTS GmbH
Werner-von-Siemens-Str. 15
82140 Olching
E-Mail: info(at)lasercomponents.com
Internet: www.lasercomponents.com
Das Bundesministerium für Bildung und Forschung (BMBF) beabsichtigt, Projekte zu den Quantentechnologien in Nachwuchsgruppen auf der Grundlage des Programms „Quantentechnologien – von den Grundlagen zum Markt“ (www.quantentechnologien.de) zu fördern. Das BMBF leistet damit einen Beitrag zur Umsetzung der Hightech-Strategie der Bundesregierung. Mit dem Nachwuchswettbewerb „Quantum Futur – Runde 2“ werden die Ziele zur Verbesserung der Rahmenbedingungen, insbesondere für den Bereich der qualifizierten Fachkräfte, konkret umgesetzt.
Bei der sogenannten zweiten Generation der Quantentechnologien steht der kontrollierte Quantenzustand einzelner oder gekoppelter Systeme im Vordergrund, d. h. seine gezielte Präparation, seine kohärente Kontrolle und nachfolgende Auslese. Dadurch ergeben sich Möglichkeiten für neue Anwendungen in der Informationsübertragung und -verarbeitung, höchstpräzise und -sensible Mess- und Abbildungsverfahren oder auch die Überwindung heutiger Beschränkungen bei der Simulation komplexer Systeme.
Förderziel
Der Nachwuchswettbewerb „Quantum Futur“ hat den Aufbau nachhaltiger Forschungsstrukturen zum Ziel. Exzellente Nachwuchsköpfe sollen die Möglichkeit erhalten, den Übergang von Erkenntnissen der Grundlagenforschung in neuartige Anwendungen in der Industrie zu stimulieren. Gleichzeitig werden jungen Akademikerinnen und Akademikern beste Start- und Rahmenbedingungen für ein erfolgreiches, wissenschaftliches Arbeiten geboten. Damit wird Abwanderungstendenzen aus der Forschungslandschaft in Deutschland entgegengewirkt, Rückkehrwillige werden motiviert sowie ausländische Forscherinnen und Forscher für den Forschungs- und Industriestandort Deutschland gewonnen. Dies dient dem Ziel, international gebildete Spitzenkompetenz, die in den Quantentechnologien gerade im außereuropäischen Ausland vorhanden ist für den Forschungsstandort Deutschland zu gewinnen und durch wissenschaftliche Qualifizierungsarbeiten zur langfristigen Wettbewerbsfähigkeit des Standorts beizutragen.
Zuwendungszweck
Mit der Förderung im Rahmen des Nachwuchswettbewerbs „Quantum Futur“ erhalten exzellente Nachwuchswissenschaftlerinnen und -wissenschaftler die Möglichkeit, an einer Forschungseinrichtung in Deutschland eine eigene, unabhängige Nachwuchsgruppe aufzubauen und neue interdisziplinäre Forschungsansätze in den Quantentechnologien aufzugreifen. Dabei sollen sie sich mit ihren Forschungsarbeiten, der Führung der Nachwuchsgruppe und der Anleitung wissenschaftlichen Personals oder durch eine Unternehmensgründung für Leitungsaufgaben in Wirtschaft oder Forschung qualifizieren.
In der vorliegenden zweiten Runde dieses Wettbewerbs sollen neue Gruppen aufgebaut und dadurch existierende Lücken gefüllt und neue Forschungsschwerpunkte geschaffen werden. Es sollen insbesondere die Felder adressiert werden, in denen in der Forschungslandschaft in Deutschland besonderer Bedarf besteht (unter anderem Quantencomputing) und thematische Stärken gezielt genutzt werden können.
Kooperationen insbesondere mit bestehenden Arbeitsgruppen der beantragenden Institution, aber darüber hinaus auch mit anderen Forschungseinrichtungen und erfahrenen Wissenschaftlerinnen und Wissenschaftlern sind explizit erwünscht. Damit werden der Aufbau weiterer eigener Kompetenzen und die intensive Vernetzung mit der Wissenschaftsgemeinschaft gefördert sowie Synergieeffekte durch die gemeinsame Nutzung vorhandener Geräte und Anlagen geschaffen. Um die Vernetzung der neuen Arbeitsgruppen untereinander und mit den relevanten Bereichen der Fach-Community zu stärken, sind darüber hinaus gemeinsame Tagungen bzw. Workshops geplant.
In der ersten Verfahrensstufe sind dem beauftragten Projektträger beurteilungsfähige Projektskizzen elektronisch über das Internetportal https://foerderportal.bund.de/easyonline/ vorzulegen. Diese Skizzen sind auf Englisch zu verfassen. Die Vorlagefrist endet am 30. Juni 2021.
Die vollständige Richtlinie finden Sie hier.
]]>Das Bundesministerium für Bildung und Forschung (BMBF) möchte Forschungsarbeiten an Hochschulen und Forschungseinrichtungen auf der Basis neuer, innovativer Laboraufbauten auf der Grundlage des Programms „Quantentechnologien – von den Grundlagen zum Markt“ (www.quantentechnologien.de) fördern. Das BMBF leistet damit einen Beitrag zur Umsetzung der Hightech-Strategie der Bundesregierung, insbesondere den wichtigen Zielen, neue Quellen für neues Wissen zu erschließen, Deutschlands Zukunftskompetenzen zu entwickeln und die Wirtschaft beim Transfer von Forschungsergebnissen aus dem Bereich der Quantentechnologie in die Anwendung zu unterstützen.
Förderziel
Deutschland verfügt über herausragende universitäre und außeruniversitäre Forschungsinstitutionen mit gut ausgebildeten Fachkräften im Bereich der Quantentechnologien und vielen potentiellen Anwendern aus unterschiedlichen Branchen.
Das Themenfeld besitzt international jedoch eine große Dynamik. Damit einher gehen stetig wachsende Anforderungen an die Labortechnik. Forschung im Bereich der Quantentechnologien benötigt daher häufig kostenintensive Forschungsgeräte. So werden − um im globalen Innovationswettbewerb bestehen zu können und exzellente Beiträge leisten zu können − neueste und effizienteste Komponenten aus den Basistechnologien benötigt, um signifikante Fortschritte in den Quantentechnologien zu erzielen.
Das BMBF beabsichtigt daher, das Innovationspotential aktueller Forschungsarbeiten in den Quantentechnologien verstärkt zu befördern, indem entscheidende Fortschritte in Präzision, Geschwindigkeit, Skalierbarkeit und Effizienz experimenteller Labortechnik erzielt werden.
Ziel ist es, innovative Forschungsprojekte an Hochschulen und Forschungseinrichtungen zu fördern, deren Bedarf an Sachmitteln die Grundausstattung und auch die nutzbare Ausstattung aus bereits laufenden Forschungsprojekten sowie die Fördermöglichkeiten durch spezifische Förderprogramme der Bundesländer weit übersteigt, und deren innovative Forschungsergebnisse einen deutlich beschleunigten Transfer in die Anwendung erwarten lassen. Insbesondere Fragestellungen zur anwendungsnahen Skalierung sollen eine Verwertung der Forschungsergebnisse in der Praxis beschleunigen.
Die Projekte sollen ferner dazu beitragen, bereits existierenden Forschungs- und Innovationspotentiale weiter zu profilieren und zu verbessern. Auf dieser Basis soll die institutseigene und auch die strategische Position Deutschlands in diesem Forschungsfeld mittel- bis langfristig gestärkt und gesichert werden.
Zuwendungszweck
Das BMBF unterstützt mit der Fördermaßnahme „Quantentechnologien – Förderung von Forschungsarbeiten an Hochschulen und Forschungseinrichtungen auf der Basis innovativer Laboraufbauten“ im Rahmen wissenschaftlicher Einzelvorhaben an Hochschulen und Forschungseinrichtungen, die zur Bearbeitung ihrer Forschungsfragen einen hohen Anschaffungsbedarf über den aktuellen Stand der Technik hinaus aufweisen. Ziel ist es, dadurch einen deutlich beschleunigten Transfer der Vorhabenergebnisse in die gewerbliche Anwendung zu ermöglichen. Hierauf können dann im Anschluss erfolgversprechende industrielle Forschungs- und experimentelle Entwicklungsvorhaben aufbauen.
Die Anschaffungen von innovativen Laboraufbauten sollen auch nach Vorhabenende einen hohen Mehrwert für die künftige Forschung erschließen. Dieser ist durch den Antragsteller darzustellen und die Bereitstellung des dafür notwendigen Personals und der Betriebsmittel nachzuweisen.
Mithilfe des FuE-Vorhabens und der darin getätigten strategischen Anschaffung im Bereich innovativer Laboraufbauten sollen entscheidende Fortschritte der Forschungsarbeiten bezogen auf einen späteren Transfer der Ergebnisse in die Praxis erzielt werden. Die Ergebnisse sollen genutzt werden, schneller konkrete Anwendungen der Quantentechnologien zu demonstrieren und im Anschluss beispielsweise durch industriegeführte Verbundprojekte die Innovationen beschleunigt in die gewerbliche Verwertung zu überführen.
In der ersten Verfahrensstufe sind dem beauftragten Projektträger bis spätestens 25. Mai 2021 beurteilungsfähige Projektskizzen in elektronischer Form über das Internetportal https://foerderportal.bund.de/easyonline/ vorzulegen.
Die vollständige Richtlinie finden Sie hier.
]]>